Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 vòng tỉnh năm 2023 - 2024 sở GDĐT Tây Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS vòng tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 23 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi Toán 9 vòng tỉnh năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Một miếng tôn hình tam giác có diện tích là S. Người thợ làm biển quảng cáo muốn cắt ra một hình bình hành (một đỉnh là đỉnh của tam giác và ba đỉnh còn lại nằm trên ba cạnh tam giác). Hỏi hình bình hành mà người thợ cắt ra có thể đạt diện tích lớn nhất bằng bao nhiêu? + Trong đợt cắm trại chào mừng ngày thành lập Đoàn 26/03 có 20 bạn mang số áo từ 1 đến 20 nắm tay nhau tạo thành một vòng tròn để tham gia các trò chơi tập thể. Chứng minh luôn tìm được 5 bạn đứng liền kề với nhau mà tổng các số áo của họ lớn hơn 52. + Chứng minh 2n3 + 3n2 + 25n chia hết cho 6 với mọi số tự nhiên n.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho hình thang ABCD vuông ở đỉnh A và đỉnh B thỏa mãn AD AB BC 2 2. Gọi H chân đường vuông góc kẻ từ A đến BD. a) Chứng minh BHC BCD và tính độ dài CH khi độ dài AB = 4cm. b) Gọi M là trung điểm của HD. Đường thẳng AM và BC cắt nhau tại điểm E. Chứng minh EC EB EM EA. + Cho hình vuông ABCD. Trên cạnh AB, AD lần lượt lấy các điểm M, N thỏa mãn AM DN. Kẻ CH vuông góc MN (H thuộc MN), đường thẳng qua M vuông góc với AB cắt CH tại P. Chứng minh ba điểm DBP thẳng hàng. + Khi kí hợp đồng làm việc thời hạn 5 năm với người lao động được tuyển dụng mới, một công ty đưa ra ba phương án trả lương như sau: Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng, kể từ năm thứ hai trở đi, mỗi năm tiền lương tăng thêm 22 triệu so với năm trước. Phương án 2: Quý thứ nhất, tiền lương là 30 triệu đồng, kể từ quý thứ hai trở đi, mỗi quý tăng 1,5 triệu đồng so với quí trước (mỗi quí được tính bừng 3 tháng). Phương án 3: Tháng thứ nhất, tiền lương là 6 triệu đồng, kể từ tháng thứ 2 trở đi, mỗi tháng tăng 300 nghìn đồng so với tháng trước. Nếu là người lao động được tuyển dụng, em sẽ chọn phương án nào để khi kết thúc hợp đồng, tổng số tiền lương thu được là nhiều nhất?
Đề chọn đội tuyển HSG Toán 9 năm 2023 - 2024 trường chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi thi thành phố môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2023. Trích dẫn Đề chọn đội tuyển HSG Toán 9 năm 2023 – 2024 trường chuyên Hà Nội – Amsterdam : + Cho các số nguyên m, n thỏa mãn mỗi số 2m + 5n và 2n + 5m là lập phương của một số nguyên. Chứng minh số K = m3 − n2 chia hết cho 9. + Cho đường tròn (O) có đường kính BC. Lấy A là một điểm bất kì thuộc đường tròn (A khác B, A khác C). Từ điểm M bất kì thuộc tia đối của tia CA (M khác C), vẽ tiếp tuyến ME, MF của đường tròn (O) (E, F là các tiếp điểm). Đường thẳng qua M vuông góc với BC tại I cắt BE, BF lần lượt tại T, Q. 1) Chứng minh rằng M là trung điểm QT. 2) Đường tròn ngoại tiếp BQT cắt đường tròn đường kính AC tại Z (Z khác A). Đường thẳng qua C, vuông góc với CM, cắt QT tại K. Dựng hình bình hành OCMW. Chứng minh KC = KZ. 3) Gọi U là trung điểm AB. Chứng minh rằng WMU = CZI. + Cho bảng ô vuông kích thước 2023 × 2024 gồm 2023 hàng và 2024 cột. Điền các số nguyên vào bảng sao cho ô nào cũng được điền và các số không nhất thiết phân biệt. Ta gọi một ô vuông 1 x 1 là tốt nếu số của nó nhỏ hơn trung bình cộng của tất cả các số cùng hàng với nó, đồng thời lớn hơn trung bình cộng của tất cả các số cùng cột với nó. a) Chỉ ra một cách điền số để trên bảng có đúng 2023 ô vuông tốt. b) Tìm số lượng ô vuông tốt nhiều nhất có thể đạt được.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Cho n là số nguyên dương thỏa mãn 3^n – 1 chia hết cho 2^2024. Chứng minh rằng n ≥ 2^2022. + Cho tam giác đều ABC có độ dài cạnh bằng 23 và đường cao AH. Trên đoạn BH lấy điểm M tùy ý (M không trùng B và H). Gọi P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. 1. Chứng minh giá trị của biểu thức MP + MQ không phụ thuộc vào vị trí của điểm M. 2. Gọi K là trung điểm của AM. a. Chứng minh rằng tứ giác PKQH là hình thoi. b. Gọi S là diện tích của hình thoi PKQH. Biết khi điểm M thay đổi thì S nhận đúng một giá trị nguyên dương. Tìm giá trị nguyên dương đó. 3. Vẽ đường tròn (O) nội tiếp tam giác ABM. Gọi D, E, F theo thứ tự là tiếp điểm của (O) với các cạnh BM, AB, AM. Vẽ DN vuông góc với EF tại N. Chứng minh BNE = MNF.
Đề học sinh giỏi Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT Mê Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT Mê Linh – Hà Nội : + Cho đa thức P(x) với các hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Chứng minh rằng đa thức P(x) – 2024 không có nghiệm nguyên. + Cho tam giác ABC có đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB; S, R, Q lần lượt là trung điểm của HA, HB, HC. Chứng minh rằng chín điểm D, E, F, M, N, P, S, R, Q cùng nằm trên một đường tròn. + Cho đa giác đều có 2023 đỉnh sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.