Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2024 - 2025 phòng GDĐT Thái Hòa - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2024 – 2025 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2024 – 2025 phòng GD&ĐT Thái Hòa – Nghệ An : + Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 6 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 10 ngày thì cả hai đội hoàn thành được 50% công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc trên? + Một thùng nước có dạng hình trụ với chiều cao 1,8m và đường kính đáy 1,2 m. Người ta sơn toàn bộ phía ngoài mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước đó (lấy π ≈ 3,14). + Cho đường tròn (O) và dây BC cố định không đi qua tâm O. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại điểm H. Gọi I là giao điểm của AD và EF. 1) Chứng minh CEHD là tứ giác nội tiếp. 2) Chứng minh DEH FEH và 112 DH DA DI. 3) Tia AD cắt đường tròn (O) tại điểm M và tia ME cắt đường tròn (O) tại điểm N (M khác A và N khác M). Gọi K là giao điểm của BN và EF. Chứng minh đường thẳng AK luôn đi qua một điểm cố định khi A thay đổi.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thanh Hóa
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Thanh Hóa Đề thi tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Thanh Hóa Vào Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thanh Hóa đã tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán cho năm học 2020-2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở GD&ĐT Thanh Hóa bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi được dành 120 phút (không tính thời gian phát đề). Trích dẫn một số câu hỏi từ đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 sở GD&ĐT Thanh Hóa: 1. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Hãy tìm giá trị của a và b sao cho đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm M(2;3). 2. Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao BD, CE của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N. Chứng minh tứ giác BCDE nội tiếp trong một đường tròn và chứng minh rằng MN song song với DE. 3. Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Hãy tìm giá trị nhỏ nhất của biểu thức: Q = (y + 2)/x^2 + (z + 2)/y^2 + (x + 2)/z^2. Đây là một số câu hỏi đặc biệt được đưa ra trong đề thi tuyển sinh THPT môn Toán năm 2020-2021 của sở GD&ĐT Thanh Hóa. Các em học sinh cần phải tự tin và chăm chỉ ôn tập để có thể giải quyết các bài toán này một cách thành công. Chúc các em sẽ có kết quả tốt trong kỳ thi tuyển sinh sắp tới!
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh Ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh: 1. Cho phương trình $x^2 + 4x + 3m – 2 = 0$, với m là tham số. a. Giải phương trình với m = -1. b. Tìm giá trị của m để phương trình đã cho có một nghiệm x = 2. c. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 sao cho x1 + 2×2 = 1. 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 32 km. Một canô xuôi dòng từ bến A đến bến B rồi lập tức quay về bến A. Kể từ lúc khởi hành đến lúc về tới bến A hết tất cả 6 giờ. Tính vận tốc của cano khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. 3. Cho đường tròn (O;R) và A là một điểm nằm bên ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC với đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Kẻ đường kính BD của đường tròn (O). AD cắt đường tròn tại điểm thứ hai là E. a. Chứng minh ABOC là tứ giác nội tiếp. b. Tính độ dài AH, biết R = 3cm, AB = 4cm. c. Chứng minh AE.AD = AH.AO. d. Tia CE cắt AH tại F. Chứng tỏ F là trung điểm của AH.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Khánh Hòa
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Khánh Hòa Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Khánh Hòa Ngày 16 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 - 2021. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Một trong các câu hỏi trong đề thi là: "Hai trường A và B trên địa bàn tỉnh Khánh Hòa đã quyên góp được 1137 phần quà gồm mì tôm (đơn vị thùng) và gạo (đơn vị bao). Mỗi lớp của trường A ủng hộ được 8 thùng mì và 5 bao gạo; mỗi lớp của trường B ủng hộ được 7 thùng mì và 8 bao gạo. Biết số bao gạo ít hơn số thùng mì là 75 phần quà. Hỏi mỗi trường có bao nhiêu lớp?". Câu hỏi tiếp theo đề cập đến hình học: "Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H. a. Chứng minh tứ giác IMON nội tiếp đường tròn. b. Chứng minh IM.IN = IH.IK. c. Kẻ NP vuông góc với MK. Chứng minh đường thẳng IK đi qua trung điểm của NP." Đề còn đưa ra một bài toán giải phương trình đơn giản: "Giải phương trình x^2 - 5x + 4 = 0".
Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên)
Nội dung Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên) Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên) Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc (chuyên) là bước quan trọng để thí sinh thi vào các lớp chuyên Toán và chuyên Tin. Đề bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc: Bài toán 1: Tìm tất cả các số nguyên dương a, b, c, d thỏa mãn a! + b! + c! = d!. Bài toán 2: Cho tam giác nhọn ABC có AB < AC và nội tiếp đường tròn (O). Chứng minh rằng tam giác ABD cân và xác định tâm đường tròn ngoại tiếp tam giác ABC. Bài toán 3: Chứng minh rằng ID.IE = IF.DE trong tam giác ABC. Bài toán 4: Giải hệ thức với điểm M, N, H, K trong tam giác ABC theo yêu cầu đề bài. Bài toán 5: Thầy Du có thể nhận được kết quả là số 2021 hoặc 2022 khi viết số 2020^2021 thành tổng của các số nguyên dương và cộng các chữ số của từng số nguyên dương này với nhau. Vậy tại sao thầy Du có thể nhận được kết quả như vậy? Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc là cơ hội để thí sinh thể hiện kiến thức và kỹ năng Toán của mình, đồng thời chuẩn bị cho hành trình học tập tương lai trong lĩnh vực Toán học.