Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Hương Sơn - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Hương Sơn, huyện Lạng Giang, tỉnh Bắc Giang; đề thi được biên soạn theo cấu trúc 30% trắc nghiệm + 70% tự luận (theo thang điểm), thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án và hướng dẫn giải mã đề 901 và 902. Trích dẫn Đề giữa học kỳ 1 Toán 9 năm 2022 – 2023 trường THCS Hương Sơn – Bắc Giang : + Cho ∆ABC vuông tại A, đường cao AH (H thuộc BC). Vẽ HE vuông góc với AB tại E, HD vuông góc với AC tại D a) Cho biết AB = 9cm, AC = 12cm. Tính các độ dài BC, AH. b) Chứng minh bốn điểm A, E, H, D cùng thuộc một đường tròn. c) Chứng minh: AE.EB + AD.DC = AH2. + Một cột điện cao có bóng trên mặt đất dài Khi đó phương tia nắng tạo với mặt đất một góc xấp xỉ bằng (làm tròn đến phút). + Cho tam giác ABC vuông tại A có AB = 6 cm; AC = 8cm. Khi đó bán kính đường tròn ngoại tiếp tam giác đó bằng?

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kì 1 Toán 9 năm 2023 - 2024 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2023 – 2024 trường THCS Trưng Vương, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 9 năm 2023 – 2024 trường THCS Trưng Vương – Hà Nội : + Khi quan sát một cột đèn tại khu đô thị nhà mình vào buổi chiều, bạn Minh nhận thấy độ dài bóng của cột đèn trên mặt đất là 3,5m. Góc tạo bởi tia nắng và phương ngang của mặt đất khoảng 41. Hỏi cột đèn mà bạn Minh quan sát cao khoảng bao nhiêu? (làm tròn kết quả đến mét). + Cho tam giác ABC nhọn có đường cao AH. Gọi D, E lần lượt là chân đường vuông góc hạ từ H xuống các cạnh AB, AC. a) Chứng minh bốn điểm A, D, H, E cùng thuộc đường tròn đường kính AH. b) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB. c) Trong trường hợp AH = 2.DE, tính số đo góc BAC.
Đề giữa học kỳ 1 Toán 9 năm 2023 - 2024 trường THCS Phương Thiện - Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS Phương Thiện, tỉnh Hà Giang; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 11 năm 2023.
Đề giữa kì 1 Toán 9 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi mã đề T901 – T902, gồm 02 trang, cấu trúc 20% trắc nghiệm (08 câu) + 80% tự luận (06 câu), thời gian làm bài 90 phút. Trích dẫn Đề giữa kì 1 Toán 9 năm 2023 – 2024 trường THCS Ngọc Lâm – Hà Nội : + Chiều dài bóng cột cờ trên mặt đất là 7,5 m. Tại thời điểm đó thì góc mà tia nắng trời tạo với mặt đất là 60. Hỏi cột cờ cao bao nhiêu mét? + Cho tam giác MNP vuông tại M. Vẽ đường cao MK, kẻ KI vuông góc với MP tại I; KJ vuông góc với MN tại J. a. Biết MJ = 18cm, JN = 8cm. Tính độ dài KJ; MK và số đo góc N (Làm tròn đến phút)? Lưu ý: Các số liệu trên chỉ được dùng cho câu a. b. Chứng minh: MN.MJ = MP.MI. Từ đó chứng minh: MIJ đồng dạng MNP. c. Chứng minh: S_MIJ/S_MNP = sin2N.sin2P.
Đề giữa học kỳ 1 Toán 9 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 01 tháng 11 năm 2023. Trích dẫn Đề giữa học kỳ 1 Toán 9 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Keangnam Hà Nội Landmark Tower được khánh thành ngày 18/05/2012, là tòa nhà cao nhất Hà Nội và là một trong những biểu tượng về sự phát triển mạnh mẽ, vượt bậc của Thủ đô. Đây là một khu phức hợp gồm 3 cao ốc, trong đó tòa cao nhất có 72 tầng. Khi tia nắng mặt trời tạo với mặt đất một góc 60 thì bóng của tòa nhà trên là 194m (như hình vẽ bên). Tính chiều cao của tòa nhà cao nhất (kết quả làm tròn đến hàng đơn vị). + Cho hình chữ nhật ABCD có AB = 4cm, BC = 3cm. Kẻ BH vuông góc AC (H thuộc AC). a) Tính độ dài các cạnh AC, BH và số đo góc BCA (làm tròn đến độ). b) Tia BH cắt đường thẳng AD ở E. Từ E kẻ đường thẳng vuông góc với đường thẳng BC tại F. Chứng minh: BH.BE = AH.AC. c) Chứng minh: BHF và BCE đồng dạng. Từ đó tính diện tích BHF.