Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tháng 4 năm 2021 lớp 12 môn Toán trường THPT chuyên Bắc Giang

Nội dung Đề thi tháng 4 năm 2021 lớp 12 môn Toán trường THPT chuyên Bắc Giang Bản PDF Nhằm ôn tập chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán, ngày … tháng 04 năm 2021, trường THPT chuyên Bắc Giang, tỉnh Bắc Giang tổ chức kỳ thi kiểm tra định kỳ môn Toán lớp 12 giai đoạn tháng 04 năm 2021. Đề thi tháng 4 năm 2021 môn Toán lớp 12 trường THPT chuyên Bắc Giang mã đề 132 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi Nhóm Toán VD – VDC). Trích dẫn đề thi tháng 4 năm 2021 môn Toán lớp 12 trường THPT chuyên Bắc Giang : + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại B, mặt bên SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Hai mặt phẳng SAB và SBC lần lượt tạo với đáy các góc 0 60 và 0 45, khoảng cách giữa hai đường thẳng SA và BC bằng a. Tính thể tích khối chóp S ABC theo a. + Cho bốn điểm A B C D. Trong các mệnh đề sau, mệnh đề nào sai? A. Tam giác ABD là tam giác đều. B. Bốn điểm A B C D tạo thành tứ diện. C. AB vuông góc với CD. D. Tam giác BCD là tam giác vuông. + Một quần thể vi khuẩn bắt đầu từ 100 cá thể và cứ su 3 giờ thì số cá thể lại tăng gấp đôi. Bởi vậy số cá thể vi khuẩn được biểu thị theo thời gian t (đơn vị: giờ) bằng công thức 3 100 2 t N t. Hỏi sau bao lâu thì quần thể này đạt tới 50000 cá thể (làm tròn đến hàng phần mười)? A. 36,8 giờ. B. 30,2 giờ. C. 26,9 giờ. D. 18,6 giờ.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán đợt 1 cuối năm 2021 2022 sở GD ĐT Nam Định
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán đợt 1 cuối năm 2021 2022 sở GD ĐT Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT đợt 1 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 28 tháng 05 năm 2022; đề thi có đáp án mã đề Mã đề 122 Câu Mã đề 124 Câu Mã đề 126 Câu Mã đề 128. Trích dẫn đề khảo sát chất lượng Toán lớp 12 đợt 1 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 4 27. Xét điểm M thuộc mặt phẳng toạ độ Oxy sao cho từ M kẻ được ba tiếp tuyến MA MB MC đến mặt cầu S (trong đó A B C là các tiếp điểm) thỏa mãn 0 AMB 60 0 BMC 90 0 CMA 120. Độ dài đoạn OM lớn nhất bằng bao nhiêu? + Trên tập hợp số phức, xét phương trình 2 z z m 2 3 0 (với m là tham số thực). Gọi hai điểm A và B là hai điểm biểu diễn hai nghiệm của phương trình đã cho. Biết rằng ba điểm O A B là ba đỉnh của một tam giác vuông (với O là gốc toạ độ), khẳng định nào dưới đây đúng? + Cho hàm số f x là hàm số đa thức bậc năm. Biết hàm số y f x có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số 3 2 3 2021 2022 f x x m g x có 8 điểm cực trị?
Đề kiểm tra khảo sát lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bình Thuận
Nội dung Đề kiểm tra khảo sát lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Thuận (mã đề 021), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2022 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề kiểm tra khảo sát Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bình Thuận : + Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 2×2 – 2mx – 1 (m là tham số) và y = x3 + x2 + 3 đạt giá trị nhỏ nhất bằng? + Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AD = 2AB = 2BC và SC vuông góc với mặt phẳng (ABCD). Nếu A(3;0;0), D(0;3;0), S(0;0;3) và C có hoành độ dương thì tung độ của B bằng? + Cho khối trụ (T) có bán kính R và chiều cao h = R2. Gọi A và B là hai điểm lần lượt thuộc hai đường tròn đáy của (T). Nếu góc và khoảng cách giữa đường thẳng AB và trục của (T) lần lượt là 45° và a thì thể tích của (T) bằng?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?