Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ vuông góc trong không gian Toán 11 - Lê Minh Tâm

Tài liệu gồm 217 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, bao gồm lý thuyết và các dạng bài tập chuyên đề quan hệ vuông góc trong không gian môn Toán 11, có đáp án và lời giải chi tiết. Bài 01 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. A. Lý thuyết. 1. Góc giữa 2 đường thẳng 3. 2. Hai đường thẳng vuông góc trong không gian 3. B. Bài tập. Bài 02 . ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. A. Lý thuyết. 1. Đường thẳng vuông góc với mặt phẳng 6. 2. Liên hệ giữa tính song song – vuông góc của đường thẳng & mặt phẳng 8. 3. Phép chiếu vuông góc 9. 4. Định lý ba đường vuông góc 9. 5. Góc giữa đường thẳng & mặt phẳng 10. 6. Kiến thức bổ trợ 10. 6.1. Một số mô hình thường gặp 10. 6.2. Các hệ thức lượng trong tam giác 11. 6.3. Các chú ý khác 12. B. Bài tập. + Dạng 1. Chứng minh đường thẳng vuông góc mặt phẳng 13. + Dạng 2. Chứng minh hai đường thẳng vuông góc 15. C. Luyện tập. Dạng: Chứng minh vuông góc 16. Dạng: Góc giữa đường mặt 18. Bài 03 . HAI MẶT PHẲNG VUÔNG GÓC. A. Lý thuyết. 1. Góc giữa hai mặt phẳng 21. 2. Hai mặt phẳng vuông góc 21. 3. Tính chất cơ bản về hai mặt phẳng vuông góc 22. 4. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương 23. 5. Hình chóp đều và hình chóp cụt đều 24. B. Bài tập. + Dạng 1. Xác định góc giữa hai mặt phẳng bằng cách dùng định nghĩa 26. + Dạng 2. Xác định góc giữa hai mặt phẳng dựa trên giao tuyến 28. + Dạng 3. Xác định góc giữa hai mặt phẳng dựa vào định lý hình chiếu 31. + Dạng 4. Chứng minh hai mặt phẳng vuông góc 33. + Dạng 5. Thiết diện 34. C. Luyện tập. Dạng: Tính góc giữa hai mặt phẳng 36. Dạng: Chứng minh hai mặt phẳng vuông góc 38. Dạng: Thiết diện 41. Bài 04 . KHOẢNG CÁCH. A. Lý thuyết. 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng 43. 1.1. Khoảng cách từ một điểm đến một đường thẳng 43. 1.2. Khoảng cách từ một điểm đến một mặt phẳng 43. 2. Khoảng cách giữa đường và mặt song song, hai mặt song song 44. 2.1. Khoảng cách giữa đường thẳng và mặt phẳng song song 44. 2.2. Khoảng cách giữa hai mặt phẳng song song 44. 3. Đường vuông góc chung và khoảng cách hai đường chéo nhau 44. 3.1. Định nghĩa 44. 3.2. Cách dựng đoạn vuông góc chung của hai đường thẳng chéo nhau 44. B. Bài tập. + Dạng 1. Khoảng cách từ chân đường cao đến một mặt bên 46. + Dạng 2. Khoảng cách từ điểm bất kỳ đến một mặt phẳng 48. + Dạng 3. Khoảng cách hai đường chéo nhau 50. C. Luyện tập. Dạng: Tính khoảng cách từ điểm đến mặt phẳng 52. Dạng: Tính khoảng cách 2 đường chéo nhau 53. Dạng: Tính khoảng cách liên quan nhỏ nhất 54. Bài 05 . ÔN TẬP CHƯƠNG VIII: QUAN HỆ VUÔNG GÓC.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm vectơ trong không gian
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vectơ trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Chứng minh các đằng thức vectơ, chứng minh 3 vectơ đồng phẳng. Dạng 2: Tính độ dài đoạn thẳng, góc giữa hai vectơ, chứng minh 2 đường thẳng vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018
Tài liệu gồm 379 trang tổng hợp câu hỏi và bài tập trắc nghiệm vectơ trong không gian, quan hệ vuông góc có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở GD – ĐT trên cả nước. Trích dẫn tài liệu trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018 : + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 45 độ. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng? (Số đo góc được làm tròn đến hàng đơn vị). [ads] + (THPT Sơn Tây – Hà Nội – lần 1 – NH 2017 – 2018) Cho lăng trụ ABC.A’B’C’ có các mặt bên là hình vuông cạnh a. Gọi D, E lần lượt là trung điểm các cạnh BC, A’C’. Tính khoảng cách giữa hai đường thẳng AB’ và DE theo a. + (THPT Tam Phước – Đồng Nai – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AD = a, AB = 2a, BC = 3a, SA = 2a, H là trung điểm cạnh AB, SH là đường cao của hình chóp S.ABCD. Tính khoảng cách từ điểm A đến mặt phẳng (SCD).
429 câu trắc nghiệm chuyên đề quan hệ vuông góc trong không gian - Phạm Văn Huy
Tài liệu gồm 45 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề quan hệ vuông góc trong không gian phân loại theo chủ đề, đáp án nằm cuối tài liệu. Trích dẫn tài liệu : + Cho hình tứ diện OABC với OA, OB, OC đôi một vuông góc và OA = OB = OC. Gọi I là trung điểm của BC, J là trung điểm AI, Gọi K, L lần lượt là hình chiếu vuông góc của O lên AI và của J lên OC. Chọn khẳng định đúng trong các khẳng định sau? A. Đoạn vuông góc chung của AI và OC là JLQ B. Đoạn vuông góc chung của AI và OC là IC C. Đoạn vuông góc chung của AI và OC là OK D. Các khẳng định trên đều sai [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường thẳng vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường thẳng này và vuông góc với đường thẳng kia B. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kỳ thuộc a tới mp(P) C. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kỳ trên b D. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kỳ trên mặt phẳng này đến mặt phẳng kia + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia B. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó C. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia D. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó cắt cả hai đường thẳng đó
Chuyên đề quan hệ vuông góc trong không gian Toán 11