Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập vận dụng min - max hình học không gian có lời giải chi tiết

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC hàm số mũ và hàm số lôgarit
Tài liệu gồm 37 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số mũ và hàm số lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Hàm số mũ. 2. Hàm số lôgarit. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. Xem thêm : + Bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông
Các dạng bài tập VDC lôgarit
Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lôgarit. 2. Tính chất. 3. Quy tắc tính lôgarit. a. Lôgarit của một tích. b. Lôgarit của một thương. c. Lôgarit của một lũy thừa. 4. Đổi cơ số. 5. Lôgarit thập phân – lôgarit tự nhiên. a. Lôgarit thập phân. b. Lôgarit tự nhiên. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. Dạng 2. Đẳng thức chứa logarit. Dạng 3. Biểu thị biểu thức theo một biểu thức đã cho và từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN).
Các dạng bài tập VDC lũy thừa và hàm số lũy thừa
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lũy thừa và hàm số lũy thừa, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lũy thừa và hàm số lũy thừa: CHỦ ĐỀ 1 . LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lũy thừa. 2. Tính chất của lũy thừa với số mũ thực. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Các phép toán biến đổi lũy thừa. Dạng 2. So sánh, đẳng thức và bất đẳng thức đơn giản. CHỦ ĐỀ 2 . HÀM SỐ LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Khảo sát hàm số lũy thừa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số lũy thừa. Dạng 2. Đồ thị hàm số lũy thừa.
Hệ thống bài tập trắc nghiệm VDC PT - BPT - HPT mũ - logarit (phần 11 - 20)
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (facebook: Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (từ phần 11 đến phần 20), giúp học sinh tiếp cận với các dạng toán nâng cao trong chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số logarit) và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (phần 11 – 20): + Đường thẳng x = k cắt đồ thị hàm số y = log5 x và đồ thị hàm số y = log5 (x + 4). Khoảng cách giữa các giao điểm là 1/2. Biết k = a + √b, trong đó a và b là các số nguyên. Khi đó tổng a + b bằng? [ads] + Cho ba số thực dương x, y, z thỏa mãn log5 x = log12 y = log84 z = log85 (x + y + z). Khi đó giá trị biểu thức logxyz 2020 nằm trong khoảng nào sau đây? + Cho các số thực dương a, b thỏa mãn đẳng thức ln (ab) + a + 2 = e^(a – eb) + b(a + e). Giá trị biểu thức ln (2a + 3b) nằm trong khoảng nào sau đây? Xem thêm : Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit (phần 1 – 10)