Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chọn HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Xuân Trường Nam Định

Nội dung Đề khảo sát chọn HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Xuân Trường Nam Định Bản PDF - Nội dung bài viết Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định bao gồm một trang đề thi với năm bài toán tự luận. Thời gian làm bài là 120 phút. Đề thi được tổ chức nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 7 từ các trường THCS trên địa bàn huyện Xuân Trường, tỉnh Nam Định. Mục đích là để tuyên dương và khen thưởng cho những em học sinh xuất sắc, đồng thời thành lập đội tuyển học sinh giỏi Toán lớp 7 để tham gia kỳ thi học sinh Toán cấp tỉnh. Đề thi cũng đi kèm với lời giải chi tiết để giúp các em học sinh hiểu rõ hơn về cách giải các bài toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Việt Trì - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm hai phần: phần trắc nghiệm khách quan: 16 câu – 08 điểm và phần tự luận: 04 câu – 12 điểm, thời gian làm bài: 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Việt Trì – Phú Thọ : + Cho tam giác ABC nhọn, đường cao BE CF E AC F AB. Gọi M là trung điểm của BC. Trên tia đối của tia MF lấy điểm D sao cho MF MD. a) Chứng minh CD BF và CD BF. b) Lấy điểm P bất kì nằm giữa B và F, trên tia đối của tia MP lấy điểm Q sao cho MP MQ. Chứng minh DQC thẳng hàng. c) Trên tia đối của tia EF lấy điểm K, trên tia đối của tia FE lấy điểm I sao cho EK FI. Chứng minh tam giác MIK cân. + Anh đọc quyển sách trong hai ngày. Ngày thứ nhất Anh đọc được 1 7 quyển sách. Ngày thứ hai Anh đọc được 7 12 số trang sách còn lại của quyển sách đó. Hỏi sau hai ngày Anh đọc được bao nhiêu phần quyển sách? + Cho ∆ABC có AB AC. Kẻ BD vuông góc với AC tại D kẻ CE vuông góc với AB tại E. Kết luận nào sau đây là đúng?
Đề HSG Toán 7 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 7 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Nhà trường thành lập ba nhóm học sinh khối 7 tham gia chăm sóc di tích lịch sử. Trong đó 2 3 số học sinh của nhóm I bằng 8 11 số học sinh của nhóm II và bằng 4 5 số học sinh nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Số học sinh của mỗi nhóm I II III lần lượt? + Cho ∆ABC có ba góc đều nhọn. Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm M sao cho ∆ABM vuông cân tại A. Trên nửa mặt phẳng bờ AC không chứa điểm B lấy điểm N sao cho ∆ACN vuông cân tại A. a) Chứng minh AMC ABN. b) Gọi K là giao điểm của BN và CM. Tính góc BKC. c) Gọi H là trực tâm của ∆ABC. Chứng minh: 2 3 HA HB HC AB AC BC. + Cho tam giác nhọn ABC. Vẽ AH vuông góc với BC. Gọi O là một điểm trên đoạn thẳng AH. Biết chu vi tam giác ABC là 24cm và BC cm 9. Giá trị lớn nhất của tổng OB OC là?
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sau đó chia theo tỉ lệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác DEF vuông cân tại D. Gọi G là trung điểm của EF. a) Chứng minh EDG = DFG. b) Lấy điểm H thuộc đoạn thẳng EG (H khác E và G). Kẻ các đường thẳng EI, FK lần lượt vuông góc với đường thẳng DH tại I và K. Chứng minh EI = DK và tam giác GIK vuông cân. + Cho tam giác MNP có NMP < 900. Vẽ ra phía ngoài tam giác MNP hai đoạn thẳng MQ vuông góc và bằng MN, MR vuông góc và bằng MP. Gọi I là trung điểm của NP. Chứng minh MI = 1/2.QR.
Đề học sinh năng khiếu Toán 7 năm 2022 - 2023 phòng GDĐT Thanh Thủy - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo Thanh Thủy, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm (16 câu – 08 điểm) kết hợp 60% tự luận (04 câu – 12 điểm), thời gian 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh năng khiếu Toán 7 năm 2022 – 2023 phòng GD&ĐT Thanh Thủy – Phú Thọ : + Có 2 hộp bút chì màu. Hộp thứ nhất có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác xuất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là? + Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D sao cho BD CD trên tia đối của tia CB lấy điểm E sao cho BD CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt các đường thẳng AB và AC lần lượt ở M và N. a) Chứng minh rằng: BM CN. b) Gọi K là giao điểm của BC và MN. Chứng minh K là trung điểm của MN. c) Từ K kẻ đường thẳng d vuông góc với MN.Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC. + Một cửa hàng có ba tấm vải dài tổng cộng 144m. Nếu cắt ở tấm thứ nhất đi 1 3 số vải; cắt ở tấm thứ hai đi 1 7 số vải và cắt ở tấm thứ ba đi 1 4 số vải thì số mét vải còn lại ở ba tấm bằng nhau. Tổng số mét vải của hai tấm thứ nhất và thứ hai khi chưa cắt là?