Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm khối đa diện và khối tròn xoay - Nguyễn Khánh Nguyên

Tài liệu gồm 40 trang với 300 bài tập trắc nghiệm chủ đề khối đa diện và khối tròn xoay trích trong các đề thi thử THPT Quốc gia. + Chủ đề 1. Khối đa diện + Chủ đề 2. Khối chóp + Chủ đề 3. Thể tích lăng trụ + Chủ đề 4. Khoảng cách + Chủ đề 5. Khối tròn xoay + Chủ đề 6. Khối nón + Chủ đề 7. Khối trụ + Chủ đề 8. Khối cầu + Chủ đề 9. Hỗn hợp: Nón – Trụ – Cầu + Chủ đề 10. Toán thực tế [ads] Trích dẫn tài liệu : + [CHUYÊN TRẦN PHÚ – 2017] Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm2. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy B. Hình trụ và chiều cao bằng bán kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình trụ và chiều cao bằng đường kính đáy + [ĐỒNG ĐẬU – 2017] Trong các mệnh đề sau, mệnh đề nào sai? A. Hình tạo bởi một số hữu hạn các đa giác được gọi là hình đa diện B. Khối đa diện bao gồm phần không gian được giới hạn bởi hình đa diện và cả hình đa diện đó C. Mỗi cạnh của một đa giác trong hình đa diện là cạnh chung của đúng hai đa giác D. Hai đa giác bất kì trong một hình đa diện hoặc là không có điểm chung, hoặc là có một đỉnh chung, hoặc là có một cạnh chung + [QUỐC HỌC HUẾ – 2017] Trong không gian cho hai điểm phân biệt A, B cố định. Tìm tập hợp tất cả các điểm M trong không gian thỏa mãn vtMA.vtMB = 3/4.AB^2 A. Mặt cầu đường kính AB B. Tập hợp rỗng (tức là không có điểm M nào thỏa mãn điều kiện trên) C. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = AB D. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = 3/4AB

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm các dạng toán ứng dụng thực tế - Đặng Việt Đông
Tài liệu gồm 168 trang với các bài toán ứng dụng thực tế có đáp án và lời giải chi tiết. Tài liệu được chia thành các phần: Phần I. Đề bài + Dạng 1: Các bài toán ứng dụng đạo hàm, GTLN – GTNN của hàm số + Dạng 2: Các bài toán ứng dụng hình đa diện + Dạng 3: Các bài toán ứng dụng hàm số mũ – lôgarit + Dạng 4: Các bài toán ứng dụng hình nón – trụ – cầu + Dạng 5: Các bài toán ứng dụng nguyên hàm – tích phân + Dạng 6: Các bài toán ứng dụng thực tế khác Phần II. Đáp án và lời giải chi tiết [ads] Trích dẫn tài liệu : + Kỳ thi THPT Quốc gia năm 2016 vừa kết thúc, Nam đỗ vào trường Đại học Bách Khoa Hà Nội. Kỳ I của năm nhất gần qua, kỳ II sắp đến. Hoàn cảnh không được tốt nên gia đình rất lo lắng về việc đóng học phí cho Nam, kỳ I đã khó khăn, kỳ II càng khó khăn hơn. Gia đình đã quyết định bán một phần mảnh đất hình chữ nhật có chu vi 50 m, lấy tiền lo cho việc học của Nam cũng như tương lai của em. Mảnh đất còn lại sau khi bán là một hình vuông cạnh bằng chiều rộng của mảnh đất hình chữ nhật ban đầu. Tìm số tiền lớn nhất mà gia đình Nam nhận được khi bán đất, biết giá tiền 1m2 đất khi bán là 1500000 VN đồng. + Người ta muốn sơn một cái hộp không nắp, đáy hộp là hình vuông và có thể tích là 4 (đơn vị thể tích)? Tìm kích thước của hộp để dùng lượng nước sơn tiết kiệm nhất. Giả sử độ dày của lớp sơn tại mọi nơi trên hộp là như nhau. A. Cạnh ở đáy là 2 (đơn vị chiều dài), chiều cao của hộp là 1 (đơn vị chiều dài) B. Cạnh ở đáy là √2 (đơn vị chiều dài), chiều cao của hộp là 2 (đơn vị chiều dài) C. Cạnh ở đáy là 2√2 (đơn vị chiều dài), chiều cao của hộp là 0,5 (đơn vị chiều dài) D. Cạnh ở đáy là 1 (đơn vị chiều dài), chiều cao của hộp là 2 (đơn vị chiều dài) + Trên một đoạn đường giao thông có 2 con đường vuông góc với nhau tại O như hình vẽ. Một địa danh lịch sử có vị trí đặt tại M, vị trí M cách đường OE 125cm và cách đường Ox 1km. Vì lý do thực tiễn người ta muốn làm một đoạn đường thẳng AB đi qua vị trí M, biết rằng giá trị để làm 100m đường là 150 triệu đồng. Chọn vị trí của A và B để hoàn thành con đường với chi phí thấp nhất. Hỏi chi phí thấp nhất để hoàn thành con đường là bao nhiêu?
385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 - Hứa Lâm Phong
Tài liệu gồm 64 trang trích dẫn 385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 do thầy Hứa Lâm Phong biên soạn.
Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng - Đặng Việt Đông
Tài liệu gồm 50 trang tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng có đáp án. Trích dẫn tài liệu : 1. Một khối gạch hình lập phương (không thấm nước) có cạnh bằng 2 được đặt vào trong một chiếu phễu hình nón tròn xoay chứa đầy nước theo cách như sau: Một cạnh của viên gạch nằm trên mặt nước (nằm trên một đường kính của mặt này); các đỉnh còn lại nằm trên mặt nón; tâm của viên gạch nằm trên trục của hình nón. Tính thể tích nước còn lại ở trong phễu (làm tròn 2 chữ số thập phân). [ads] 2. Học sinh lần đầu thử nghiệm tên lửa tự chế phóng từ mặt đất theo phương thẳng đứng với vận tốc 15m/s. Hỏi sau 2,5s tên lửa bay đến độ cao bao nhiêu ? (giả sử bỏ qua sức cản gió, tên lửa chỉ chịu tác động của trọng lực g = 9,8 m/s2) 3. Một công ti chuyên sản xuất container muốn thiết kế các thùng gỗ đựng hàng bên trong dạng hình hộp chữ nhật không nắp, đáy là hình vuông, có V = 62,5 cm3. Hỏi các cạnh hình hộp và cạnh đáy là bao nhiêu để S xung quanh và S đáy nhỏ nhất?
121 bài tập trắc nghiệm câu hỏi thực tế, có hướng dẫn giải - Nguyễn Bảo Vương
Tài liệu gồm 48 trang với 121 bài toán thực tế có hướng dẫn giải và đáp án do tác giả Nguyễn Bảo Vương cùng nhóm tác giả tổng hợp và biên soạn. Trích một số bài toán trong tài liệu: 1. Một con cá bơi ngược dòng để vượt một khoảng cách là 300km, vận tốc nước là 6(km/h). Vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức: E(v) =  c.v^3.t, trong đó c là hằng số, E tính bằng Jun. Hỏi vận tốc bơi của cá khi nước đứng yên sao cho năng lượng tiêu hao ít nhất là bao nhiêu ? [ads] 2. Trong tất cả các hình chữ nhật có diện tích S thì hình chữ nhật có chu vi nhỏ nhất bằng bao nhiêu? 3. Một nhà sản xuất cần thiết kế một thùng sơn dạng hình trụ có nắp đậy với dung tích 1000 cm3. Biết rằng bán kính của nắp đậy sao cho nhà sản xuất tiết kiệm nguyên vật liệu nhất có giá trị là a. Hỏi giá trị a gần với giá trị nào nhất dưới đây?