Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

242 bài tập trắc nghiệm chuyên đề toán ứng dụng thực tế - Phạm Minh Tuấn

Tài liệu gồm 92 trang tuyển chọn 242 bài toán ứng dụng thực tiễn gồm đầy đủ các dạng bài khác nhau, trong đó: + 137 bài tập ứng dụng thực tiễn có đáp án + 105 bài tập ứng dụng thực tiễn tự luyện Trích dẫn tài liệu : + Bạn Lộc trong thời gian 5 năm Đại Học đã vay ngân hàng mỗi năm 10 triệu đồng với lãi suất 2,9% một năm (thủ tục vay một năm 1 lần vào thời điểm đầu năm học). Khi ra trường Lộc thất nghiệp chưa trả được tiền cho ngân hàng và phải chịu lãi suất 8% một năm. Sau 1 năm thất nghiệp, bạn ấy đã tìm được công việc làm và bắt đầu trả nợ dần. Tính tổng số tiền ban Lộc nợ ngân hàng trong 5 năm học đại học và 1 năm thất nghiệp? [ads] + Giả sử đoạn đường AC thẳng có độ dài 100m. Bạn An đứng ở vị trí D và bạn Bình đứng ở vị trí B sao cho tạo thành tứ diện ABCD như hình vẽ, biết các góc DAC = 25 độ, góc DCA = 37 độ, góc BAC = 35 độ và góc BCA = 32 độ. Khi đó tổng khoảng cách từ chỗ của bạn An và bạn Bình đứng đến đoạn đường AC gần nhất với giá trị nào sau đây? + Một mảnh sân hình chữ nhật có chiều rộng và chiều dài tương ứng là 7,6m và 11,2m được lát kín bởi các viên gạch hình vuông có cạnh 20cm.( Cho rằng diện tích phần tiếp giáp nhau giữa các viên gạch là không đáng kể). Người ta đánh số các viên gạch được lát từ 1 cho đến hết. Giả sử trên viên gạch thứ nhất người ta đặt lên đó 1 hạt đậu , trên viên gạch thứ hai người ta đặt lên đó 7 hạt đậu, trên viên gạch thứ ba người ta đặt lên đó 49 hạt đậu, trên viên gạch thứ tư người ta đặt lên đó 343 hạt đậu … và cứ đặt các hạt đậu theo cách đó cho đến viên gạch cuối cùng ở trên sân này. Gọi S là tổng số hạt đậu đã đặt lên các viên gạch của sân đó. Hỏi nếu viết trong hệ thập phân, số 6S + 1 có bao nhiêu chữ số?

Nguồn: toanmath.com

Đọc Sách

Một số cách giải và kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio - Trần Thanh Tuyền
Tài liệu gồm 8 trang hướng một số cách giải, kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio, tài liệu cũng đưa ra những sai lầm cần tránh khi dùng máy tính cầm tay để giải. Nội dung chính gồm các phần: 1. Tìm số phức – xác định phần thực, phần ảo của số phức + Dạng 1: Không chứa z và liên hợp của z + Dạng 2: Có chứa z và liên hợp của z [ads] 2. Tìm tập hợp điểm biểu diễn số phức + Dạng 1: Chỉ dùng cho các đáp án có dạng là các đồ thị đường thẳng + Dạng 2: Làm được cho tất cả các loại đồ thị đường 3. Giải phương trình trên C + Dạng 1: Căn bậc 2 của số phức + Dạng 2: Phương trình không chứa đơn vị ảo i + Dạng 3: Phương trình chứa đơn vị ảo i
110 bài tập trắc nghiệm số phức - Nguyễn Tấn Phong
Tài liệu gồm 8 trang với phần tóm tắt lý thuyết, công thức tính cơ bản và tuyển chọn 110 bài toán trắc nghiệm số phức. Trích dẫn tài liệu : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x3 [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x + Trong mặt phẳng (Oxy), cho A, B, C là 3 điểm lần lượt biểu diễn các số phức: 3 + 3i, -2 + i, 5 – 2i. Tam giác ABC là tam giác gì? A. Một tam giác cân B. Một tam giác đều C. Một tam giác vuông D. Một tam giác vuông cân
250 bài tập trắc nghiệm số phức chọn lọc - Nguyễn Văn Rin
Tài liệu gồm 27 trang với các bài toán trắc nghiệm số phức chọn lọc từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và cơ sở GD – ĐT trên toàn quốc. Trích dẫn tài liệu : + (ĐỀ MINH HỌA – 2017) Cho số phức z = 3 – 2i . Tìm phần thực và phần ảo của số phức z‾. A. Phần thực bằng -3 và phần ảo bằng -2i B. Phần thực bằng -3 và phần ảo bằng -2 C. Phần thực bằng 3 và phần ảo bằng 2i D. Phần thực bằng 3 và phần ảo bằng 2 [ads] + (ĐỀ THỬ NGHIỆM – 2017) Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z. A. Phần thực là -4 và phần ảo là 3 B. Phần thực là 3 và phần ảo là -4i C. Phần thực là 3 và phần ảo là -4 D. Phần thực là -4 và phần ảo là 3i + Trong các khẳng định sau, khẳng định nào sai? A. Tập hợp các điểm biểu diễn các số phức có môđun bằng 1 là đường tròn đơn vị (đường tròn có bán kính bằng 1, tâm là gốc tọa độ) B. Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện |z| ≤ 1 là phần mặt phẳng phía trong (kể cả biên) của đường tròn đơn vị C. Tập hợp các điểm biểu diễn các số phức có phần thực bằng 3 là một đường thẳng song song với trục hoành D. Tập hợp các điểm biểu diễn các số phức có phần thực và phần ảo thuộc khoảng (-1; 1) là miền trong của một hình vuông
160 bài tập trắc nghiệm số phức - Trần Đình Thiên
Tài liệu gồm 17  trang với phần tóm tắt lý thuyết, công thức tính và 160 bài tập trắc nghiệm số phức, tài liệu được biên soạn bởi tác giả Trần Đình Thiên nhằm bổ sung thêm các bài toán trắc nghiệm số phức chất lượng để các em luyện tập thêm trong quá trình học nội dung Giải tích 12 chương 4. Trích dẫn tài liệu 160 bài tập trắc nghiệm số phức – Trần Đình Thiên : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số ảo là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Hai đường thẳng y = ±x (trừ gốc toạ độ O). D. Đường tròn x^2 + y^2 = 1.