Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài toán đếm

Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề các dạng bài toán đếm, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. DẠNG 1 : BÀI TOÁN ĐẾM SỐ CÓ YẾU TỐ CHIA HẾT. Một số dấu hiệu chia hết cần lưu ý: + Số n chia hết cho 2 khi chữ số tận cùng của nó là 0, 2, 4, 6, 8. Ví dụ: 24; 508 …. + Số n chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3. Ví dụ: 126; 540 …. + Số n chia hết cho 4 khi 2 chữ số tận cùng của nó phải chia hết cho 4. Ví dụ: 116; 544 …. + Số n chia hết cho 5 khi chữ số tận cùng của nó là 0 hoặc 5. Ví dụ: 80, 205 …. + Số n chia hết cho 6 khi nó đồng thời chia hết cho 2 và 3. + Số n chia hết cho 8 khi 3 chữ số cuối cùng của nó phải chia hết cho 8. + Số n chia hết cho 9 khi tổng các chữ số của nó chia hết cho 9. + Số n chia hết cho 10 khi chữ số tận cùng của nó là 0. + Số n chia hết cho 12 khi nó đồng thời chia hết cho 3 và 4. + Số n chia hết cho 15 khi nó đồng thời chia hết cho 3 và 5. + Số n chia hết cho 20 khi hai chữ số tận cùng của nó là 00; 20; 40; 60 và 80 + Số n chia hết cho 25 khi hai chữ số tận cùng của nó là 25; 50; 75; và 00. DẠNG 2 : BÀI TOÁN ĐẾM SỐ CÓ RÀNG BUỘC LỚN BÉ, SỐ LẦN XUẤT HIỆN CHỮ SỐ. DẠNG 3 : BÀI TOÁN CHỌN NGƯỜI VÀ ĐỒ VẬT. DẠNG 4 : BÀI TOÁN ĐẾM CÓ YẾU TỐ HÌNH HỌC. Một số kết quả quan trọng cần lưu ý: 1. Với n điểm cho trước trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng được tạo ra là 2Cn, số véc tơ có điểm đầu và điểm cuối lấy từ n đỉnh là 2An. 2. Cho đa giác lồi n cạnh, số đường chéo của đa giác là 2 C n n. 3. Cho đa giác lồi n cạnh, xét các tam giác có 3 đỉnh là 3 đỉnh của đa giác, khi đó: Số tam giác có đúng 1 cạnh chung với đa giác là n n 4; Số tam giác có đúng 2 cạnh chung với đa giác là n; Số tam giác không có cạnh chung với đa giác là 3 4 C n n n n. 4. Cho đa giác đều có 2n cạnh, số các tam giác vuông có 3 đỉnh là các đỉnh của đa giác n n 2 2. 5. Cho đa giác đều có n cạnh, số tam giác nhọn được tạo thành từ 3 trong n đỉnh của đa giác là 3 Cn (số tam giác tù + số tam giác vuông). 6. Cho đa giác đều có n cạnh, số tam giác tù có 3 đỉnh là các đỉnh của đa giác được tính bởi công thức: Nếu n chẵn 2 2 2 n n C; Nếu n lẻ 2 1 2 n n C. 7. Cho đa giác lồi n cạnh, xét các tứ giác có 4 đỉnh là các đỉnh của đa giác, khi đó: Số tứ giác có đúng 1 cạnh chung với đa giác là 2 4 5 n n C n A; Số tứ giác có đúng 2 cạnh chung với đa giác là 5 5 2 n n n n B; Số tứ giác có đúng 3 cạnh chung với đa giác là n C; Số tứ giác không có cạnh chung với đa giác là 4 C A B C n. 8. Cho đa giác đều có 2n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH CHỮ NHẬT là 2 Cn. 9. Cho đa giác đều có 4n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH VUÔNG là n.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp
Tài liệu gồm 56 trang được tổng hợp và biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập 36 câu hỏi và bài tập trắc nghiệm quy tắc cộng và quy tắc nhân, 227 câu hỏi và bài tập trắc nghiệm hoán vị, chỉnh hợp và tổ hợp, có đáp án và lời giải chi tiết, các câu hỏi và bài tập trong tài liệu này được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán. Khái quát nội dung tài liệu các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp: PHÉP ĐẾM – QUY TẮC CỘNG VÀ QUY TẮC NHÂN Dạng 1 . Quy tắc cộng. Dạng 2 . Quy tắc nhân. Dạng 3 . Kết hợp quy tắc cộng và quy tắc nhân. [ads] HOÁN VỊ – CHỈNH HỢP – TỔ HỢP Dạng 1 . Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 1.1 Chỉ sử dụng P. Dạng 1.1.1 Bài toán đếm số. Dạng 1.1.2 Bài toán chọn người (vật). Dạng 1.2 Chỉ sử dụng C. Dạng 1.2.1 Bài toán đếm số (tập số, tập hợp). Dạng 1.2.2 Bài toán chọn người (vật). Dạng 1.2.3 Bài toán liên quan đến hình học. Dạng 1.3 Chỉ sử dụng A. Dạng 1.3.1 Bài toán đếm số (tập số, tập hợp). Dạng 1.3.2 Bài toán chọn người (vật). Dạng 1.3.3 Bài toán liên quan đến hình học. Dạng 2 . Bài toán kết hợp hoán vị, tổ hợp, chỉnh hợp. Dạng 2.1 Bài toán đếm số (tập số). Dạng 2.2 Bài toán chọn người (vật). Dạng 2.3 Bài toán liên quan đến hình học. Dạng 3 . Giải phương trình, bất phương trình, hệ liên quan đến hoán vị, chỉnh hợp, tổ hợp.
Chuyên đề nhị thức Newton (Niu-tơn) - Lê Văn Đoàn
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 tài liệu tự học chủ đề Nhị thức Newton (Niu-tơn), tài liệu gồm 42 trang bao gồm lý thuyết cơ bản cùng một số bài tập thuộc các dạng toán nhị thức Newton thường gặp trong chương trình Đại số và Giải tích 11. Khái quát nội dung tài liệu chuyên đề nhị thức Newton (Niu-tơn) – Lê Văn Đoàn: A. LÝ THUYẾT CẦN NẮM VỮNG 1. Nhị thức Newton . 2. Nhận xét :  + Trong khai triển (a ± n)^n có n + 1 số hạng và các hệ số của các cặp số hạng cách đều số hạng đầu và số hạng cuối thì bằng nhau. + Số hạng tổng quát có dạng và số hạng thứ N thì k = N – 1. + Trong khai triển (a – b)^n thì dấu đan nhau, nghĩa là + rồi – rồi + …. + Số mũ của a giảm dần, số mũ của b tăng dần nhưng tổng số mũ a và b bằng n. 3. Tam giác Pascal : Các hệ số của khai triển: (a + b)^0, (a + b)^1, (a + b)^2 … (a + b)^n có thể xếp thành một tam giác gọi là tam giác PASCAL. [ads] B – CÁC DẠNG TOÁN NHỊ THỨC NEWTON + Dạng toán 1. Tìm hệ số hoặc số hạng trong khai triển nhị thức Newton. + Dạng toán 2. Chứng minh hoặc tính tổng. + Dạng toán 3. Tìm hệ số hoặc số hạng dạng có điều kiện (kết hợp giữa dạng toán 1 và dạng toán 2). Trong mỗi dạng toán đều bao gồm tóm tắt phương pháp giải, một số bài tập mẫu và bài tập tương tự, bài tập về nhà giúp học sinh tự rèn luyện.
108 bài toán tổ hợp - phương pháp
Tài liệu gồm 28 trang tuyển chọn 108 bài toán tổ hợp – phương pháp hay và đặc sắc giúp học sinh tham khảo nâng cao khả năng giải các dạng toán chủ đề tổ hợp và phương pháp, tài liệu được biên soạn bởi TS. Nguyễn Văn Lợi (Chủ biên) và Ngô Thị Nhã. Mục lục tài liệu 108 bài toán tổ hợp – phương pháp : 1. Biểu đồ Venn – Logic. 2. Nguyên lý Dirichlet (chuồng và thỏ) I. 3. Nguyên lý Dirichlet II. 4. Các bài toán trên bàn cờ. 5. Hình học tổ hợp. 6. Chuyên đề số học. 7. Trò chơi – Games. 8. Quy nạp. 9. Tổng hợp. 10. Thêm thêm. 11. Những viên ngọc của xứ sở kim cương.
Một số bài toán tổ hợp đếm - Phạm Thị Hiên
Tài liệu gồm 70 trang đề cập đến một số bài toán tổ hợp trong toán học phổ thông, cụ thể là các bài toán tổ hợp sử dụng các phương pháp đếm từ cơ bản đến nâng cao. CHƯƠNG 1 – CƠ SỞ LÍ THUYẾT VỀ TỔ HỢP 1. Nhắc lại về tập hợp. 2. Quy tắc cộng và quy tắc nhân. 3. Giai thừa và hoán vị. 4. Chỉnh hợp, tổ hợp. 5. Chỉnh hợp lặp, hoán vị lặp và tổ hợp lặp. CHƯƠNG 2 – MỘT SỐ BÀI TOÁN TỔ HỢP CƠ BẢN 1. Một số bài toán đếm không lặp. + Bài toán lập số. + Bài toán chọn vật, chọn người, sắp xếp. + Bài toán tương tự. 2. Một số bài toán đếm có lặp. + Bài toán lập số. + Bài toán đếm sử dụng tổ hợp lặp. + Bài toán đếm sử dụng chỉnh hợp lặp. + Bài toán đếm sử dụng hoán vị lặp. + Bài toán phân bố các đồ vật vào trong hộp. + Bài toán tương tự. [ads] CHƯƠNG 3 – MỘT SỐ BÀI TOÁN TỔ HỢP SỬ DỤNG PHÉP ĐẾM NÂNG CAO 1. Một số bài toán sử dụng nguyên lý bù trừ. + Nguyên lý bù trừ. + Các bài toán giải bằng phương pháp bù trừ. 2. Một số bài toán giải bằng phương pháp song ánh. + Phương pháp song ánh. + Các bài toán tổ hợp giải bằng phương pháp song ánh. 3. Một số bài toán giải bằng phương pháp hàm sinh. + Bài toán chọn các phần tử riêng biệt. + Bài toán chọn các phần tử có lặp. 4. Một số bài toán giải bằng phương pháp hệ thức truy hồi. + Khái niệm mở đầu và mô hình hóa bằng hệ thức truy hồi. + Các bài toán tổ hợp giải bằng hệ thức truy hồi. + Các bài toán tương tự. 5. Bài toán giải bằng nguyên lí cực hạn – khả năng xảy ra nhiều nhất, ít nhất. 6. Bài toán giải bằng phương pháp sắp xếp thứ tự. 7. Bài toán giải bằng phương pháp liệt kê các trường hợp.