Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ thuật liên hợp giải phương trình chứa căn - Nguyễn Tiến Chinh

Tài liệu gồm 26 trang giới thiệu kỹ thuật liên hợp giải phương trình chứa căn do thầy Nguyễn Tiến Chinh biên soạn. Tài liệu trình bày chi tiết phương pháp tư duy tìm lượng liên hợp và kỹ thuật xử lí liên hợp cũng như sau khi liên hợp. + Dự đoán nghiệm x = x0 bằng máy tính bỏ túi (SHIFT – SOLVE hay ALPHA – CALC). + Tách, ghép phù hợp để sau khi nhân liên hợp xuất hiện nhân tử chung (x – x0) hoặc bội của (x – x0) trong phương trình nhằm đưa về phương trình tích số: (x – x0).g(x) = 0. + Sử dụng các công thức thường dùng trong nhân liên hợp. Chú ý : + Khi dùng nhân liên hợp các em chú ý về bậc của x trong biểu thức cần liên hợp, bậc cao – bậc thấp hơn nhé. + Điểm nhấn của phương pháp liên hợp đó là biểu thức còn lại trong móc vuông luôn dương – hoặc luôn âm khi đó ta làm thế nào để chứng minh điều đó hoặc viết như thế nào để thể hiện được điều này (có thể dùng đạo hàm – đánh giá). Kỹ thuật 1 : Bài toán chứa hai căn: √A và √B, lấy A – B xem có xuất hiện nhân tử chung hay không. Kỹ thuật 2 : Thay trực tiếp nghiệm vào trong căn để tìm lượng liên hợp: Nếu phương trình có 1 nghiệm mà đó là nghiệm nguyên – thay nghiệm đó vào trong căn ta được số a nào đó vậy ghép √M – a làm một cặp liên hợp. [ads] Kỹ thuật 3 : Hệ số bất định Kỹ thuật 4 : Đoán nhân tử chung nhờ máy tính (Dành cho phương trình có nghiệm vô tỷ) Nếu thấy phương trình có hai nghiệm nhưng đều lẻ ta tính tổng hai nghiệm và tích hai nghiệm xem có đẹp không, nếu đẹp thì phương trình có nhân tử chung sẽ là x^2 – Sx + P, vấn đề làm thế nào tìm ra được biểu thức liên hợp? Giả sử 2 nghiệm là x1, x2 biểu thức liên hợp cần tìm là ax + b: + Thay x1 vào căn được kết quả là C, thay x2 vào căn ta được kết quả là D. +Giải hệ phương trình ax1 + b = C và ax2 + b = D, vậy là xong các em đã có biểu thức liên hợp. Kỹ thuật 5 : Nếu phương trình có hai nghiệm và đều nguyên để tìm lượng liên hợp ta làm như sau: Giả sử lượng liên hợp là ax + b muốn tìm a, b ta thay lần lượt hai nghiệm vào phương trình: ax + b = √M, giải tìm a, b. Kỹ thuật 6 : Truy ngược dấu tìm biểu thức liên hợp: Khi gặp một phương trình vô tỷ,ta biết rằng phương trình này có thể giải được bằng phương pháp liên hợp,dùng MODE 7 ta cũng biết rằng phương trình này chỉ có đúng một nghiệm – Nhưng sau khi liên hợp xong biểu thức còn lại rất cồng kềnh phức tạp và khó chứng minh phương trình này vô nghiệm lúc đó ta sẽ làm gì.Tất cả sẽ có trong bài viết này với những phân tích bình luận đơn giản thông qua 20 ví dụ.Hi vọng rằng đó sẽ là sức mạnh giúp các em giải quyết triệt để lớp bài toán này. Kết luận: Với các kỹ thuật đã được nêu ra và các ví dụ được phân tích và nhận xét một cách khá tỷ mỉ,lối trình bày định hướng tuy duy cho mỗi lời giải cũng khá rõ ràng hy vọng rằng bài viết sẽ là một hành trang bổ trợ cho các em một công cụ mạnh mẽ trong việc chinh phục những bài toán về phương trình chứa căn.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 30 bài toán bất phương trình vô tỉ - Nguyễn Minh Tiến
Tài liệu gồm 18 trang tuyển chọn 30 bài toán bất phương trình vô tỉ có lời giải chi tiết, tài liệu được biên soạn bởi tác giả Nguyễn Minh Tiến.
Tuyển tập 100 bài toán Hệ phương trình
Tài liệu gồm 52 trang tuyển chọn và giải chi tiết 100 bài toán hệ phương trình, các bài toán hệ phương trình được tuyển chọn gồm nhiều dạng bài khác nhau, trong mỗi bài toán lại được giải bằng nhiều phương pháp, cách giải khác nhau nhằm giúp học sinh tiếp cận được nhiều dạng toán về hệ phương trình và có nhiều hướng tiếp cận khi giải bài toán này.
Kinh nghiệm giải Oxy và phương trình trong đề thi Quốc gia - Nguyễn Lê Đức Trọng
Tài liệu gồm 77 trang truyền đạt các kinh nghiệm giải Oxy và phương trình trong đề thi THPT Quốc gia do tác giả đúc kết qua quá trình học tập. Lời giới thiệu : Tôi là một cựu học sinh của trường THPT Chuyên Thủ Khoa Nghĩa, niên khoá 2013 – 2016 và vừa trải qua kì thi THPT Quốc gia năm 2016. Trong quá trình ôn luyện thi môn Toán, tôi có một số kinh nghiệm đúc kết cho bản thân thông qua việc làm bài tập, đặc biệt là trong các dạng bài tập phân loại như hình học giải tích phẳng Oxy, phương trình, hệ phương trình, bất phương trình. Riêng phần bất đẳng thức, giá trị lớn nhất, nhỏ nhất tôi sẽ hoàn thành nếu còn thời gian. Bây giờ, tôi thực hiện bài viết này nhằm chia sẻ với các bạn điều đó, vì trong thời gian sau thi hầu như tôi khá rãnh rỗi. Bài viết không chất chứa nhiều bài toán, vì tôi nghĩ với xu thế thị trường sách tham khảo phong phú như bây giờ thì việc tìm những quyển sách tham khảo cho mỗi bạn không hề khó khăn, các bạn có rất nhiều sự lựa chọn tác giả và đầu sách phù hợp với khả năng, sở thích của mình. Vì thế, bài viết này chỉ đơn giản là một tài liệu nhằm trao đổi kinh nghiệm trong việc giải toán, một công cụ để các bạn tìm ra lời giải cho bài toán, chứ không nhằm tiếp thu nhiều dạng toán khác nhau. [ads] Bài viết này phù hợp với các bạn học sinh đã học xong chương trình toán lớp 10, những bạn có mục tiêu điểm 7, 8, 9 môn Toán trong kì thi THPT Quốc gia và tuyển sinh ĐH, CĐ sắp tới. Vì cũng chỉ là người đã từng tiếp thu tri thức, người đã đi trước các bạn một bước trong quá trình chuẩn bị cho kì thi lớn trong cuộc đời học sinh, nên trình độ nhận thức của tôi đôi khi cũng rất hạn chế. Bài viết này là những nhận thức chủ quan, có khi đúng, có khi sai, nhưng tôi sẽ cố gắng hạn chế tối đa những sai lầm. Chúng ta có thể trao đổi với nhau để tìm ra con đường ngắn hơn để đi đến kết quả cuối cùng. Tôi luôn sẵn sàng tiếp nhận những ý kiến trao đổi của các bạn và nhìn nhận sai lầm của mình. Hi vọng bài viết sẽ là công cụ hữu ích cho các bạn trong bước đường chuẩn bị cho kì thi THPT Quốc gia 2017, 2018 và những năm tiếp theo. Chúc mọi người, đặc biệt là các bạn có được một quá trình rèn luyện và chuẩn bị tốt cho kì thi của riêng mình, đạt kết quả cao nhất.
164 bài toán hệ - bất - phương trình trong các đề thi thử Quốc gia 2016 - Trần Văn Tài
Tài liệu gồm 92 trang tuyển tập 164 bài toán hệ phương trình và bất phương trình trong các đề thi thử Quốc gia 2016 từ các trường và các sở GD và ĐT trên toàn quốc, mỗi bài toán đều được giải chi tiết đến đáp số cuối cùng. Các bài toán được sưu tầm và tổng hợp bởi thầy Trần Văn Tài. Hy vọng qua các lời giải chi tiết, bạn đọc có thể năm vững được các kỹ năng giải hệ phương trình và bất phương trình mức độ vận dụng cao, để từ đó không con cảm thấy “e ngại” các bài toán điểm 9, 10 trong đề thi THPT Quốc gia môn Toán. [ads]