Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình thang

Nội dung Chuyên đề hình thang Bản PDF - Nội dung bài viết Chuyên đề hình thangI. Tóm tắt lý thuyếtII. Bài tập và các dạng toán Chuyên đề hình thang Tài liệu này bao gồm 09 trang, tóm tắt lý thuyết quan trọng cần nắm vững, phân loại các dạng toán và hướng dẫn cách giải từng dạng toán, lựa chọn các bài tập từ dễ đến khó về chuyên đề hình thang. Đồng thời, có đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập chương trình Hình học lớp 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Tóm tắt những lý thuyết quan trọng về hình thang như tính chất, định nghĩa, mối quan hệ giữa các cạnh và góc. II. Bài tập và các dạng toán A. Các dạng bài minh họa Dạng 1. Tính số đo các góc: Sử dụng tính chất của đường thẳng song song và tổng của bốn góc của một tứ giác. Kết hợp với các kiến thức đã học để tính toán số đo các góc. Dạng 2. Chứng minh hình thang, hình thang vuông: Áp dụng định nghĩa của hình thang và hình thang vuông để chứng minh. Dạng 3. Chứng minh mối liên hệ giữa các cạnh, tính diện tích của hình thang, hình thang vuông: Sử dụng các kiến thức về tỉ số, diện tích để giải quyết bài toán. B. Phiếu bài tự luyện Cung cấp các bài tập tự luyện để học sinh tự kiểm tra và rèn luyện kỹ năng giải toán liên quan đến hình thang.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phép nhân các phân thức đại số
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép nhân các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Sử dụng quy tắc nhân để thực hiện phép tính. Vận dụng quy tắc đã nêu trong phần tóm tắt lý thuyết để thực hiện yêu cầu của bài toán. Dạng 2 . Tính toán sử dụng kết hợp các quy tắc đã học. Sử dụng hợp lý ba quy tắc đã học: quy tắc cộng, quy tắc trừ và quy tắc nhân để tính toán. Chú ý: + Đối với phép nhân có nhiều hơn hai phân thức, ta vẫn nhân các tử thức với nhau và các mẫu thức với nhau. + Ưu tiên tính toán đối với biểu thức trong dấu ngoặc trước (nếu có).
Chuyên đề phép trừ các phân thức đại số
Tài liệu gồm 21 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép trừ các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Phân thức đối. 2. Quy tắc trừ hai phân thức đại số. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Thực hiện phép tính có sử dụng quy tắc trừ các phân thức đại số. + Bước 1. Áp dụng quy tắc trừ các phân thức đại số đã nêu trong phần tóm tắt lý thuyết. + Bước 2. Thực hiện tương tự phép cộng các phân thức đại số đã học trong bài 5. Dạng 2 . Tìm phân thức thỏa mãn yêu cầu. + Bước 1. Đưa phân thức cần tìm về riêng một vế. + Bước 2. Sử dụng kết hợp quy tắc cộng, trừ các phân thức đại số, từ đó suy ra phân thức cần tìm. Dạng 3 . Giải toán đố có sử dụng phép trừ các phân thức đại số. + Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài. + Bước 2. Sử dụng kết hợp quy tắc cộng, trừ các phân thức đại số đã học. III. PHIẾU BÀI TẬP TỰ LUYỆN Dạng 1. Tìm phân thức đối của một phân thức. Dạng 2. Trừ các phân thức cùng mẫu thức. Dạng 3. Trừ các phân thức không cùng mẫu thức. Dạng 4. Chứng minh đẳng thức. Dạng 5. Biểu thị các đại lượng thông qua biến.
Chuyên đề phép cộng các phân thức đại số
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép cộng các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Quy tắc cộng hai phân thức cùng mẫu thức: Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức. 2. Quy tắc cộng hai phân thức có mẫu thức khác nhau: Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Cộng xác phân thức đại số thông thường. Sử dụng kết hợp hai quy tắc cộng phân thức đại số. Dạng 2 . Cộng các phân thức đại số có sử dụng quy tắc đối dấu. + Bước 1. Áp dụng quy tắc đổi dấu phân thức: A/B = -A/-B. + Bước 2. Thực hiện tương tự dạng 1. Dạng 3 . Tính giá trị biểu thức tổng các phân thức đại số. + Bước 1. Thực hiện phép cộng các phân thức đại số tương tự dạng 1 và dạng 2. + Bước 2.Thay giá trị của biến vào phân thức và tính. Dạng 4 . Giải toán đố có sử dụng phép cộng các phân thức đại số. + Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài. + Bước 2. Sử dụng kết hợp hai quy tắc cộng phân thức đại số đã nêu trong phần tóm tắt lý thuyết.
Chuyên đề quy đồng mẫu thức nhiều phân thức
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề quy đồng mẫu thức nhiều phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT Để quy đồng mẫu thức nhiều phân thức, ta thực hiện các bước sau đây: + Bước 1. Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung. + Bước 2. Tìm nhân tử phụ của mỗi mẫu thức. + Bước 3. Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN + Dạng 1: Tìm mẫu thức chung của các phân thức. + Dạng 2: Quy đồng các mẫu thức.