Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm khối đa diện và khối tròn xoay - Nguyễn Khánh Nguyên

Tài liệu gồm 40 trang với 300 bài tập trắc nghiệm chủ đề khối đa diện và khối tròn xoay trích trong các đề thi thử THPT Quốc gia. + Chủ đề 1. Khối đa diện + Chủ đề 2. Khối chóp + Chủ đề 3. Thể tích lăng trụ + Chủ đề 4. Khoảng cách + Chủ đề 5. Khối tròn xoay + Chủ đề 6. Khối nón + Chủ đề 7. Khối trụ + Chủ đề 8. Khối cầu + Chủ đề 9. Hỗn hợp: Nón – Trụ – Cầu + Chủ đề 10. Toán thực tế [ads] Trích dẫn tài liệu : + [CHUYÊN TRẦN PHÚ – 2017] Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm2. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy B. Hình trụ và chiều cao bằng bán kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình trụ và chiều cao bằng đường kính đáy + [ĐỒNG ĐẬU – 2017] Trong các mệnh đề sau, mệnh đề nào sai? A. Hình tạo bởi một số hữu hạn các đa giác được gọi là hình đa diện B. Khối đa diện bao gồm phần không gian được giới hạn bởi hình đa diện và cả hình đa diện đó C. Mỗi cạnh của một đa giác trong hình đa diện là cạnh chung của đúng hai đa giác D. Hai đa giác bất kì trong một hình đa diện hoặc là không có điểm chung, hoặc là có một đỉnh chung, hoặc là có một cạnh chung + [QUỐC HỌC HUẾ – 2017] Trong không gian cho hai điểm phân biệt A, B cố định. Tìm tập hợp tất cả các điểm M trong không gian thỏa mãn vtMA.vtMB = 3/4.AB^2 A. Mặt cầu đường kính AB B. Tập hợp rỗng (tức là không có điểm M nào thỏa mãn điều kiện trên) C. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = AB D. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = 3/4AB

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập cơ bản về Số phức - Đặng Việt Hùng
Tài liệu các dạng bài tập cơ bản về Số phức được biên soạn bởi thầy Đặng Việt Hùng gồm 28 trang tóm tắt lý thuyết, công thức tính và các bài toán số phức có lời giải chi tiết. Thông qua tài liệu, học sinh có thể nắm được phương pháp giải các bài toán số phức cơ bản thường bắt gặp trong chương trình Giải tích 12 chương 4. Khái quát nội dung tài liệu các dạng bài tập cơ bản về Số phức – Đặng Việt Hùng: BÀI 1 . MỞ ĐẦU VỀ SỐ PHỨC Phần 1. Khái niệm số phức. Một số phức z là một biểu thức dạng z = a + bi, trong đó a, b là những số thực và số i thỏa mãn i^2 = -1. Trong đó: i là đơn vị ảo, a được gọi là phần thực của số phức, b được gọi là phần ảo của số phức. Tập hợp các điểm biểu diễn số phức kí hiệu là C. Phần 2. Biểu diễn hình học của số phức. Cho số phức z = a + bi (a, b ∈ R) được biểu diễn bởi điểm M(a; b) (hay M(z)) trong mặt phẳng tọa độ Oxy (hay còn gọi là mặt phẳng phức). Trong đó: trục hoành Ox (trục thực) biểu diễn phần thực a, trục tung Oy (trục ảo) biểu diễn phần ảo b. Phần 3. Module của số phức. Cho số phức z = a + bi, module của số phức z kí hiệu là |z| và được tính theo biểu thức: |z| = √(a^2 + b^2). Phần 4. Số phức liên hợp. Cho số phức z = a + bi, số phức liên hợp của số phức z kí hiệu là z‾ và được tính theo biểu thức: z‾ = a – bi. Phần 5. Các phép toán về số phức. Các phép toán cơ bản về số phức bao gồm: phép cộng, trừ hai số phức, phép nhân hai số phức, phép chia cho số phức khác 0. Phần 6. Các tính chất của số phức. Cho số phức z = x + yi , ba tính chất sau của số phức được xếp vào 1 nhóm. Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm liên hợp. Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm module. [ads] BÀI 2 . CÁC DẠNG QUỸ TÍCH PHỨC Phần 1. Các dạng quỹ tích cơ bản. Đường thẳng: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường thẳng nếu như M(x;y) có tọa độ thỏa mãn phương trình đường thẳng: Ax + By + C = 0. Đường tròn: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường tròn nếu như M(x;y) có tọa độ thỏa mãn phương trình đường tròn (C) : (x – a)^2 + (y – b)^2 = R^2, trong đó I(a;b) là tâm đường tròn và R là bán kính đường tròn. Đường Elip: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường elip nếu như M(x;y) có tọa độ thỏa mãn phương trình đường elip (E): x^2/a^2 + y^2/b^2 = 1, trong đó a, b tương ứng là các bán trục lớn và bán trục nhỏ của elip. Phần 2. Một số dạng toán nâng cao về quỹ tích phức. Cho hai số phức z1 và z2 được biểu diễn bởi các điểm tương ứng là M1 và M2. Khi đó |z1 – z2| = M1M2. BÀI 3 . PHƯƠNG TRÌNH PHỨC Phần 1. Căn bậc hai số phức. Cho số phức z = a + bi, số phức w = x + yi được gọi là căn bậc hai của số phức z nếu w^2 = z hay (x + yi)^2 = a + bi. Phần 2. Phương trình phức bậc 2. BÀI 4 . DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 1. Khái niệm về dạng lượng giác của số phức. Cho số phức z = a + bi, số phức trên được gọi là dạng đại số của số phức. Số phức z = r(cosφ + isinφ) được gọi là dạng lượng giác của số phức, trong đó: r: là module của số phức, φ: là argument của số phức. 2. Cách chuyển đổi một số phức từ dạng đại số sang lượng giác. Để chuyển số phức z = a + bi sang dạng lượng giác z = r(cosφ + isinφ) ta phải tìm được module và argument của số phức. 3. Nhân và chia hai số phức dạng lượng giác. 4. Công thức Moiver và ứng dụng dạng lượng giác của số phức. Cho số phức z = r(cosφ + isinφ), khi đó z^n = [r(cosφ + isinφ)]n = r^n[cos(nφ) + isin(nφ)].
500 bài tập chọn lọc thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 326 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển chọn 500 bài tập trắc nghiệm chủ đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học chương 1, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 500 bài tập chọn lọc thể tích khối đa diện – Lê Minh Tâm: + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh bên SA vuông góc với đáy, SA = 3a và thể tích của khối chóp bằng a3. Tính độ dài cạnh đáy AB. + Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, SA vuông góc (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 30. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có thể tích V = 2a3 và đáy ABC là tam giác vuông cân tại A biết AB = a. Tính h là khoảng cách từ S đến mặt phẳng (ABC).
Hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện
Tài liệu gồm 123 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển tập hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học. TỔNG HỢP MỘT SỐ DẠNG TÍNH THỂ TÍCH CẦN LƯU Ý. Dạng 1: Hình chóp tam giác có cạnh bên vuông góc với đáy. Dạng 2: Hình chóp tứ giác có cạnh bên vuông góc với đáy. Dạng 3: Hình chóp tam giác đều. Dạng 4: Hình chóp tứ giác đều. Dạng 5: Hình chóp tam giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 6: Hình chóp tứ giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 7: Hình lăng trụ đều. Dạng 8: Hình lăng trụ đứng. Dạng 9: Hình lăng trụ có đường cao khác cạnh bên. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN TRONG ĐỀ THI THPT QUỐC GIA.
Bài tập trắc nghiệm thể tích khối đa diện vận dụng cao
Tài liệu gồm 64 trang, tuyển chọn các bài tập trắc nghiệm thể tích khối đa diện vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 1: Khối Đa Diện Và Thể Tích Của Chúng. THỂ TÍCH KHỐI ĐA DIỆN: Phần 1. Thể tích khối đa diện. Phần 2. Tỷ số thể tích. Phần 3. Cực trị.