Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 12 môn Toán (vòng 2) năm 2020 2021 trường chuyên Nguyễn Du Đắk Lắk

Nội dung Đề thi HSG lớp 12 môn Toán (vòng 2) năm 2020 2021 trường chuyên Nguyễn Du Đắk Lắk Bản PDF Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 2. Đề thi HSG Toán lớp 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán lớp 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tam giác ABC (AC > AB). Lấy hai điểm M, N lần lượt trên AB và AC sao cho MN song song với BC. Gọi P là giao điểm của hai đoạn thẳng BN và CM. Gọi A’ là điểm đối xứng của A qua đường thẳng BC; (w) là đường tròn ngoại tiếp tam giác AMN. a) Gọi E là điểm thuộc đường tròn (w) sao cho AE // MN. Chứng minh rằng: E, P, A’ thẳng hàng. b) Gọi F là giao điểm thứ hai của A’P với đường tròn (w) và I là tâm đường tròn ngoại tiếp tam giác AA’F. Chứng minh IF tiếp xúc với đường tròn ngoại tiếp tam giác BFC. + Cho tập hợp A = {1;2; . . . ; 101}, tô màu ít nhất 50 phần tử của A sao cho: nếu a và b thuộc A (a, b không nhất thiết phân biệt) được tô màu và a + b thuộc A thì a + b cũng được tô màu. Gọi S là tổng tất cả các số không được tô màu của A. Tìm giá trị lớn nhất của S. + Tìm tất cả n tự nhiên để 2^2^2^ . . .  ^2 (n số 2) – 2 viết được thành a^3 + b^3 + c^3 với a, b, c nguyên.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Kon Tum
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào ngày 26 tháng 01 năm 2024; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Kon Tum : + Chứng tỏ rằng đồ thị hàm số 3 2 yx x m 3 2 luôn có hai điểm cực trị và khoảng cách giữa hai điểm cực trị đó không phụ thuộc vào tham số m. + Điền ngẫu nhiên 10 số tự nhiên đầu tiên 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 vào 10 ô vuông trong bảng ở hình vẽ bên dưới (mỗi ô vuông điền đúng một số). Tính xác suất để ba ô vuông liền kề nhau bất kì có tổng ba số ghi trong ba ô vuông đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a 60o ABC. Biết SA SB SC góc hợp bởi đường thẳng SD và mặt phẳng (ABCD) là 45o. 1. Gọi N là điểm trên cạnh SD. Tìm vị trí của điểm N để đường thẳng AN hợp với mặt phẳng (ABCD) một góc 45o. 2. Gọi M là trung điểm AB, G là trọng tâm tam giác ∆SCD. Tính khoảng cách giữa hai đường thẳng AG CM theo a.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 - 2024 sở GDĐT Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Cho hàm số y = (x + 1)/(x – 3) có đồ thị là (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến cắt các trục tọa độ Ox, Oy lần lượt tại hai điểm phân biệt A và B sao cho OB = 4OA. + Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho AB = 6, AC = 8, BC = 10 và khoảng cách từ O đến mặt phẳng (ABC) bằng 11. Tính thể tích của khối cầu (S). + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều. Hình chiếu vuông góc của A trên (ABC) là trung điểm của BC. Mặt phẳng (P) vuông góc với các cạnh bên và cắt các cạnh bên AA’, BB’, CC’ của hình lăng trụ lần lượt tại I, J, K. Biết góc giữa mặt phẳng (ABB’A’) và mặt phẳng (BCC’B’) bằng 30° và diện tích tam giác IJK bằng 3. Tính khoảng cách giữa CC’ và A’B.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Lâm Đồng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT & GDTX năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào sáng thứ Sáu ngày 26 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Lâm Đồng : + Cho tập hợp A = {1; 2; 3; …; 20}. Chọn ngẫu nhiên 3 phần tử của A. Tính xác suất để 3 phần tử được chọn lập thành cấp số cộng. + Cho hình vuông H1 có cạnh bằng a (a > 0). Người ta chia mỗi cạnh hình vuông H1 thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông H2. Từ hình vuông H2 tiếp tục làm như trên ta nhận được hình vuông H3. Lặp lại cách chia như trên ta được dãy các hình vuông H1, H2, H3, …, Hn, … (tham khảo hình vẽ ở bên). Gọi S là diện tích của hình vuông Hk (k thuộc {1; 2; 3; …; n; …}). Đặt T = S1 + S2 + S3 + … + Sn + …. Tìm a biết T = 16. + Từ một tấm tôn hình vuông có cạnh bằng 12(dm) người ta cắt bỏ các tam giác vuông cân tạo thành hình tô đậm như hình vẽ ở bên. Sau đó người ta gập lại và hàn thành hình hộp chữ nhật (H) không nắp. Tính thể tích nước tối đa mà khối hộp chữ nhật (H) có thể chứa được.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 06 trang, hình thức 40% tự luận (04 câu – 08 điểm) + 60% trắc nghiệm (40 câu – 12 điểm), thời gian làm bài 180 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 4, tam giác SAB đều, tam giác SCD vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA. Tính thể tích khối chóp S.BDM. + Hai bạn An và Bình hẹn gặp nhau tại thư viện từ 9 giờ đến 10 giờ. Người đến trước đợi quá 15 phút mà không gặp thì rời đi. Tính xác suất để hai người đi ngẫu nhiên đến nơi hẹn theo quy định mà gặp nhau. + Cắt hình nón đỉnh I bởi một mặt phẳng đi qua trục hình nón ta được một tam giác vuông cân có cạnh huyền bằng a 2. Gọi BC là dây cung của đường tròn đáy hình nón sao cho mặt phẳng (IBC) tạo với mặt phẳng chứa đáy hình nón một góc 60. Diện tích của tam giác IBC bằng?