Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Kim Thành – Hải Dương : + Cho biểu thức. Rút gọn A và tìm giá trị nguyên của x để A nhận giá trị nguyên. + Cho a, b, c là các số nguyên và thỏa mãn a3 + b3 = 5c3 + 11d3. Chứng minh rằng tổng (a + b + c + d) chia hết cho 6. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng (d) song song với AH, (d) cắt đường thắng AC tại P. Gọi Q là trung điểm của BP, tia AQ cắt đường thẳng BC tại I. Chứng minh.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình.
Đề học sinh năng khiếu Toán 8 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra học sinh năng khiếu môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 8 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Cho ABC có độ dài các cạnh lần lượt là a, b, c; chu vi của tam giác là 2p. Chứng minh rằng? + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. a) Chứng minh: E là trực tâm của ABC từ đó suy ra BC vuông góc với AE. b) Chứng minh ba điểm D, N, F thẳng hàng. c) Gọi K là giao điểm của AC và MN. Chứng minh: AP.CK = AK.CP d) Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất. + Người ta dùng các số 1, 2, 3, 4, 5, 6, 7, 8 để gán cho các đỉnh của một hình lập phương, hai đỉnh khác nhau thì gán các số khác nhau. Sau đó tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau?
Đề HSG huyện Toán 8 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho x y z là các số thực dương thoả mãn điều kiện: x + y + z = x.y.z. Chứng minh rằng? + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. 1. Chứng minh: KF // EH. 2. Chứng minh: các đường thẳng EK, HF, BD đồng quy. 3. Chứng minh: S_MKAE = S_MHCF. + Giả sử số A được viết bởi 2n chữ số 1; số B được viết bởi n chữ số 4 với n là số nguyên dương bất kỳ. Chứng minh rằng số A + B + 1 bằng bình phương của một số nguyên.