Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Nho Quan Ninh Bình

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2018-2019 phòng GD&ĐT Nho Quan Ninh Bình Đề học sinh giỏi lớp 8 môn Toán năm 2018-2019 phòng GD&ĐT Nho Quan Ninh Bình Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh đề học sinh giỏi huyện môn Toán lớp 8 năm 2018 - 2019 do phòng GD&ĐT Nho Quan - Ninh Bình tổ chức. Đề thi bao gồm đầy đủ đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Hy vọng đây sẽ là tài liệu hữu ích giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 8 năm 2016 - 2017 phòng GDĐT Phù Ninh - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ : + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). 1. Chứng minh tam giác AMN vuông cân và AN2 = NC.NP. 2. Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD. 3. Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM2 + 1AQ2 không đổi khi điểm M thay đổi trên cạnh BC. + Tỉ số các cạnh bé nhất của hai tam giác đồng dạng bằng 2/5. Tính chu vi P và P’ của hai tam giác đó biết P’ – P = 18 cm. + Cho tam giác ABC có độ dài ba cạnh: AB = 20 cm, AC = 34 cm, BC = 42 cm. Diện tích của tam giác đó là?
Đề thi Olympic Toán 8 năm 2016 - 2017 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic Toán 8 năm 2016 – 2017 phòng GD&ĐT Thanh Oai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 8 năm 2016 – 2017 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho tam giác ABC. Gọi P là giao điểm của ba đường phân giác trong của tam giác đó. Đường thẳng qua P và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N. Chứng minh. + Chứng minh rằng giữa ba số nguyên tố lớn hơn 3 luôn tìm được hai số có tổng hoặc hiệu chia hết cho 12. + Tìm số tự nhiên n để biểu thức sau là số nguyên tố 12n2 – 5n – 25.
Đề thi kiến thức Toán 8 năm 2016 - 2017 phòng GDĐT Quận 1 - TP HCM
Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán 8 năm học 2016 – 2017. Đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM có đáp án và lời giải chi tiết. Trích dẫn đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM : + Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Tìm số học sinh ban đầu của mỗi lớp. + Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: HED ~ HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M để x2 + y2 + z2 đạt giá trị nhỏ nhất.
Đề thi học sinh giỏi huyện Toán 8 năm 2016 - 2017 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh; đề thi có đáp án, lời giải và thang điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Giải vô địch bóng đá quốc gia Việt Nam 2016-2017 có 14 đội tham gia. Mỗi đội phải thi đấu cới các đội còn lại 1 trận ở sân nhà và một trận ở sân khách. Kết thúc mùa giải có tất cả bao nhiêu trận đấu? + Trong 1 hộp có 60 viên bi màu, gồm 25 bi màu đỏ, 20 bi màu xanh, và 15 bi màu vàng. Cần lấy ra ít nhất là bao nhiêu viên bi (mà không cần nhìn vào hộp) để có 3 viên bi khác màu? + Cho một lưới ô vuông có kích thước 5×5 ô. Người ta điền vào mỗi ô của lưới một trong các số -1; 0; 1. Xét tổng của các số theo từng cột, theo từng hàng và theo từng hàng chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.