Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Triệu Phong Quảng Trị

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Triệu Phong Quảng Trị Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023-2024 Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023-2024 Chào quý thầy cô và các em học sinh lớp 9, đây là đề thi chọn học sinh giỏi văn hóa môn Toán lớp 9 năm học 2023-2024 do Phòng Giáo dục và Đào tạo huyện Triệu Phong, tỉnh Quảng Trị tổ chức. Đề thi bao gồm các câu hỏi sau: 1. Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên đường chéo AC. Đường thẳng qua E và song song với AB cắt BC tại F. Gọi G là điểm đối xứng với C qua F, chứng minh rằng EG song song với đường chéo BD. 2. Cho tam giác ABC vuông cân tại A có AM là đường trung tuyến (M thuộc BC). Đường thẳng qua B và vuông góc với phân giác trong của góc MAC cắt AC, AM lần lượt tại D, E. Chứng minh CD = 2ME. 3. Một hình tròn được chia thành 6 hình quạt tròn. Tóm viết lần lượt lên 6 hình quạt đó các số 2, 0, 2, 3, 0, 9 theo chiều kim đồng hồ, mỗi hình quạt được viết 1 số. Jerry có thể cộng thêm 1 đơn vị cho mỗi số ở 2 hình quạt tròn kề nhau bất kỳ. Hãy xác định xem Jerry có thể cộng thêm như vậy để được các số ở 6 hình quạt tròn bằng nhau hay không? Chúc quý thầy cô và các em học sinh hoàn thành tốt đề thi và đạt kết quả cao trong kỳ thi học sinh giỏi Toán lớp 9 năm 2023-2024. Để biết rõ hơn về từng câu hỏi và cách giải, hãy cùng tham gia vào bài thi và trải qua những trải nghiệm ý nghĩa!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo tỉnh Thái Bình; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày … tháng 12 năm 2022. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thái Bình : + Trên mặt phẳng tọa độ Oxy cho điểm M(1;2) và đường thẳng (d): y = ax + b (với a > 0). Tìm a, b để đường thẳng (d) đi qua điểm M và cắt các trục tọa độ Ox, Oy lần lượt tại hai điểm A, B (A, B khác gốc tọa độ) thỏa mãn: 12.OA + 5.OB = 13.AB b) Chứng minh rằng không tồn tại đa thức f(x) có các hệ số nguyên, đồng thời thỏa mãn: f(16) = 2022 và f(3) = 2. + Cho tứ giác lồi ABCD. Lấy điểm M bất kỳ trên đường chéo AC. Qua M kẻ MP song song với AB; MQ song song với CD (P thuộc BC; Q thuộc AD). Chứng minh rằng : 1/(MP² + MQ²) =< 1/AB² + 1/CD². Khi 1/(MP² + MQ²) = 1/AB² + 1/CD², tính độ dài đoạn thẳng CM theo độ dài các đoạn thẳng AB, AC, CD. + Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn, vẽ các tiếp tuyến MA, MB (A, B là các tiếp điểm). Lấy điểm N nằm trên đường tròn và thuộc miền trong của tam giác AMB (N khác A, B). Vẽ tiếp tuyến với đường tròn (O;R) tại điểm N cắt MA, MB thứ tự tại P, Q. Đoạn thẳng AB cắt đoạn thẳng OP tại E; cắt đoạn thẳng OQ tại F. Chứng minh rằng: AE.BF = PN.NQ.
Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Bến Tre; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày … tháng 12 năm 2022. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Bến Tre : + Cho biểu thức: A. a) Chứng minh rằng: A > 4. b) Tìm các giá trị của a để biểu thức 6/A nhận giá trị nguyên. + Tìm tất cả các số tự nhiên n để B = n(n + 1)(n + 2)/6 + 1 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. b) Chứng minh: BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt các đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng: MP = MQ.
Đề thi chọn HSG tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào thứ Ba ngày 13 tháng 12 năm 2022. Trích dẫn Đề thi chọn HSG tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Cho hệ phương trình (với m là tham số). Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm duy nhất (x;y) thỏa điều kiện x + y > 1. + Cho hình vuông ABCD có cạnh bằng a. Điểm E di động trên cạnh CD (khác C, D). M là giao điểm của AE với BC. Qua A kẻ đường thẳng vuông góc với AE cắt CD tại N. I là trung điểm của đoạn thẳng MN. Đường phân giác của góc BAE cắt cạnh BC tại P. Chứng minh rằng: a) BM.DE = a². b) AI vuông góc với MN và I luôn nằm trên một đường thẳng cố định khi E di động trên cạnh CD (khác C, D). c) AP ≤ 2EP. + Cho P = n6 − n4 + 2n3 + 2n2 (với n thuộc N và n > 1). Chứng minh rằng: P không phải là số chính phương.
Đề thi HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Sơn Động - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi được biên soạn theo cấu trúc 60% trắc nghiệm + 40% tự luận (theo điểm số), thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 20 tháng 10 năm 2022. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một cây cau có chiều cao 7m. Để hái một buồn cau xuống, phải đặt thang tre sao cho đầu thang tre đạt độ cao đó, khi đó góc của thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8m (làm tròn đến phút). + Cho tam giác ABC vuông tại A AB AC kẻ đường cao AH của ABC. Gọi D và E là hình chiếu của H trên AB và AC. 1) Cho AB cm 6 và HC cm 6 4. Tính BC và AC. 2) Chứng minh: 3 DE BC BD CE. 3) Đường thẳng qua B vuông góc với BC cắt HD tại M; Đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh M A N thẳng hàng. + Cho đường tròn O 2 AB là một dây của đường tròn có độ dài là 2. Khoảng cách từ tâm O đến AB có giá trị là?