Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác

Nội dung Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Bản PDF - Nội dung bài viết Chuyên Đề: Quan Hệ Giữa Góc Và Cạnh Đối Diện Trong Tam GiácLí Thuyết Trọng TâmCác Dạng Bài TậpDạng 1: So Sánh Hai Góc Trong Một Tam GiácDạng 2: So Sánh Hai Cạnh Trong Một Tam Giác Chuyên Đề: Quan Hệ Giữa Góc Và Cạnh Đối Diện Trong Tam Giác Trong chuyên đề này, chúng ta sẽ tìm hiểu về quan hệ giữa góc và cạnh đối diện trong một tam giác. Chủ đề được trình bày trên 10 trang tài liệu, bao gồm lý thuyết về trọng tâm, các dạng toán và bài tập liên quan. Mục tiêu của chuyên đề là giúp học sinh lớp 7 hiểu rõ về định lí về quan hệ giữa góc và cạnh đối diện trong tam giác, và áp dụng kiến thức đó vào việc so sánh độ dài các cạnh và số đo góc của tam giác. Chúng ta cũng sẽ phát triển kĩ năng vận dụng các định lí để giải quyết các bài toán, và biết cách vẽ hình theo đúng yêu cầu bài toán để nhận biết các tính chất qua hình vẽ. Lí Thuyết Trọng Tâm Trọng tâm trong một tam giác là một điểm giao điểm của các đường trung tuyến. Chúng ta sẽ tìm hiểu về tính chất và cách tính toán trọng tâm trong tam giác. Các Dạng Bài Tập Dạng 1: So Sánh Hai Góc Trong Một Tam Giác Để so sánh hai góc trong một tam giác, chúng ta có thể so sánh hai cạnh đối diện với hai góc đó. Định lí cơ bản: "Trong một tam giác, góc có cạnh đối diện lớn hơn thì lớn hơn". Hãy thực hành và làm bài tập liên quan. Dạng 2: So Sánh Hai Cạnh Trong Một Tam Giác Để so sánh hai cạnh trong một tam giác, chúng ta có thể so sánh hai góc đối diện với hai cạnh đó. Định lí quan trọng: "Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn". Hãy thực hành và vận dụng vào các bài tập. Chuyên đề này sẽ giúp bạn hiểu rõ hơn về quan hệ giữa góc và cạnh đối diện trong tam giác và phát triển kĩ năng giải quyết bài toán hình học một cách chắc chắn. Hãy cùng tham gia và đắt những kiến thức bổ ích từ chuyên đề này.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tỉ lệ thức và tính chất của dãy tỉ số bằng nhau
Tỉ lệ thức và tính chất của dãy tỉ số bằng nhau là một nội dung quan trọng trong chương trình Đại số lớp 7; để giúp các em tìm hiểu chuyên sâu chủ đề này, THCS. giới thiệu tài liệu chuyên đề tỉ lệ thức và tính chất của dãy tỉ số bằng nhau; tài liệu gồm có 50 trang. Khái quát nội dung tài liệu chuyên đề tỉ lệ thức và tính chất của dãy tỉ số bằng nhau: I. Tóm tắt lý thuyết chung 1. Định nghĩa, tính chất của tỉ lệ thức. 2. Tính chất của dãy tỉ số bằng nhau. II. Các dạng toán thường gặp Chủ đề 1. Tìm số hạng chưa biết. + Dạng toán 1. Tìm một số hạng chưa biết. + Dạng toán 2. Tìm nhiều số hạng chưa biết. Chủ đề 2. Chứng minh đẳng thức. + Dạng toán 1. Chứng tỏ rằng: ad = bc. + Dạng toán 2. Đặt k là giá trị chung của các tỷ số a/b; c/d. Tính các tỷ số x/y; m/n theo k. + Dạng toán 3. Dùng biến đổi đại số và tính chất của dãy tỉ số bằng nhau để biến đổi từ vế này thành vế kia. Chủ đề 3. Tính giá trị của biểu thức. Chủ đề 4. Tính giá trị của biểu thức. Chủ đề 5. Các bài toán về tỷ lệ thức và chia tỷ lệ. Chủ đề 6. Sai lầm thường gặp khi giải toán tỷ lệ thức. III. Bài tập luyện tập tổng hợp IV. Hướng dẫn giải bài tập
Tài liệu tự học Toán 7 - Nguyễn Chín Em
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tự học Toán 7 do thầy Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm 381 trang trình bày đầy đủ lý thuyết SGK, phân dạng toán và hướng dẫn giải các bài toán Đại số và Hình học lớp 7. Khái quát nội dung tài liệu tự học Toán 7 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . SỐ HỮU TỈ. SỐ THỰC. 1 TẬP HỢP R CÁC SỐ HỮU TỈ. + Dạng 1. Biểu diễn số hữu tỉ. + Dạng 2. So sánh hai số hữu tỉ. 2 CỘNG, TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng, trừ số hữu tỉ. + Dạng 2. Mở đầu về phương trình. + Dạng 3. Biểu diễn một số hữu tỉ thành tổng hoặc hiệu của các số hữu tỉ khác. 3 NHÂN, CHIA SỐ HỮU TỈ. 4 GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. 5 LŨY THỪA CỦA MỘT SỐ HỮU TỈ. 6 TỈ LỆ THỨC. 7 SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. LÀM TRÒN SỐ. 8 SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. CHƯƠNG 2 . HÀM SỐ VÀ ĐỒ THỊ. 1 ĐẠI LƯỢNG TỈ LỆ THUẬN. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ THUẬN. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ thuận để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ thuận. 2 ĐẠI LƯỢNG TỈ LỆ NGHỊCH. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ NGHỊCH. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ nghịch để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ nghịch. 3 HÀM SỐ. 4 MẶT PHẲNG TỌA ĐỘ. 5 ĐỒ THỊ HÀM SỐ y = ax VỚI a ≠ 0. CHƯƠNG 3 . THỐNG KÊ. 1 THU THẬP SỐ LIỆU THỐNG KÊ. 2 BẢNG TẦN SỐ CÁC GIÁ TRỊ CỦA DẤU HIỆU. 3 BIỂU ĐỒ. 4 SỐ TRUNG BÌNH CỘNG. CHƯƠNG 4 . BIỂU THỨC ĐẠI SỐ. 1 KHÁI NIỆM VỀ BIỂU THỨC ĐẠI SỐ. 2 GIÁ TRỊ CỦA MỘT BIỂU THỨC ĐẠI SỐ. 3 ĐƠN THỨC. 4 ĐƠN THỨC ĐỒNG DẠNG. 5 ĐA THỨC. + Dạng 1. Nhận biết đa thức. + Dạng 2. Thu gọn đa thức. + Dạng 3. Tìm bậc của đa thức. 6 CỘNG TRỪ ĐA THỨC. + Dạng 1. Tính tổng, hiệu của hai đa thức. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức. + Dạng 3. Bài toán liên quan đến chia hết. 7 ĐA THỨC MỘT BIẾN. 8 CỘNG, TRỪ ĐA THỨC MỘT BIẾN. 9 NGHIỆM CỦA ĐA THỨC MỘT BIẾN. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . ĐƯỜNG THẲNG VUÔNG GÓCĐƯỜNG THẲNG SONG SONG. 1 HAI GÓC ĐỐI ĐỈNH. 2 HAI ĐƯỜNG THẲNG VUÔNG GÓC. 3 CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG. + Góc so le trong. Góc đồng vị. + Tính chất. 4 HAI ĐƯỜNG THẲNG SONG SONG. 5 TỪ VUÔNG GÓC ĐẾN SONG SONG. CHƯƠNG 2 . TAM GIÁC. 1 TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Giải bài toán định lượng. + Bài tập luyện tập. 2 HAI TAM GIÁC BẰNG NHAU. 3 HAI TAM GIÁC BẰNG NHAU CẠNH – CẠNH – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, BC = a, AC = b. 4 HAI TAM GIÁC BẰNG NHAU CẠNH – GÓC – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Vẽ tam giác ABC biết AB = c, AC = b và góc BAC = α. 5 HAI TAM GIÁC BẰNG NHAU GÓC – CẠNH – GÓC. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, A = α, B = β. 6 TAM GIÁC CÂN. + Dạng 1. Chứng minh tính chất của tam giác cân, tam giác đều. + Dạng 2. Chứng minh một tam giác là tam giác cân, tam giác đều. + Dạng 3. Sử dụng tam giác cân, tam giác đều để giải toán định lượng. + Dạng 4. Sử dụng tam giác cân giải bài toán định tính. 7 ĐỊNH LÍ PY – TA – GO. 8 CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. CHƯƠNG 3 . QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC.CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. 1 QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT TAM GIÁC. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác giải toán. 2 QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng giải toán. 3 QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC – BẤT ĐẲNG THỨC TAM GIÁC. + Dạng 1. Chứng minh bất đẳng thức tam giác. + Dạng 2. Sử dụng bất đẳng thức tam giác để giải toán. 4 TÍNH CHẤT BA ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC. + Dạng 1. Tính độ dài đoạn thẳng. + Dạng 2. Chứng minh tính chất hình học. 5 TÍNH CHẤT TIA PHÂN GIÁC CỦA MỘT GÓC. + Dạng 1. Chứng minh tính chất tia phân giác của một góc. + Dạng 2. Chứng minh một tia là tia phân giác của một góc. + Dạng 3. Dựng tia phân giác của một góc. + Dạng 4. Sử dụng tính chất tia phân giác của một góc để giải toán. 6 TÍNH CHẤT BA ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC. 7 TÍNH CHẤT ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG. + Dạng 1. Chứng minh tính chất đường trung trực. + Dạng 2. Sử dụng tính chất đường trung trực để giải toán. 8 TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC. + Dạng 1. Chứng minh tính chất ba đường trung trực của tam giác. + Dạng 2. Sử dụng tính chất của ba đường trung trực của tam giác để giải toán. 9 TÍNH CHẤT BA ĐƯỜNG CAO CỦA TAM GIÁC.
Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song
Tài liệu gồm 22 trang được biên soạn bởi tác giả Toán Họa, tổng hợp kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song trong chương trình Hình học lớp 7 chương 1. Khái quát nội dung tài liệu kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song: BÀI 1 . HAI GÓC ĐỐI ĐỈNH + Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh góc kia. + Hai góc đối đỉnh thì bằng nhau. + Mỗi góc chỉ có một góc đối đỉnh với nó. + Hai góc bằng nhau chưa chắc đã đối đỉnh. BÀI 2 . HAI GÓC ĐỐI ĐỈNH + Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và một trong các góc tạo thành là góc vuông. + Qua một điểm cho trước, có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước. + Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng đó tại trung điểm của nó. [ads] BÀI 3 . CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG + Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và một trong các góc tạo thành là góc vuông. + Nếu hai đường thẳng cắt một đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì: Hai góc so le trong còn lại bằng nhau, Hai góc đồng vị bằng nhau, Hai góc trong cùng phía bù nhau. BÀI 4 . HAI ĐƯỜNG THẲNG SONG SONG + Hai đường thẳng song song (trong mặt phẳng ) là hai đường thẳng không có điểm chung. + Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau. + Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song. BÀI 5 . TIÊN ĐỀ ƠCLIT VỀ ĐƯỜNG THẲNG SONG SONG + Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó. + Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba thì: Hai góc so le trong bằng nhau, Hai góc đồng vị bằng nhau. + Hai góc trong cùng phía bù nhau. BÀI 6 . TỪ VUÔNG GÓC TỚI SONG SONG + Nếu hai đường thẳng (phân biệt) cùng vuông góc với một đường thẳng thứ ba thì song song với nhau. + Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường kia. + Hai đường thẳng (phân biệt) cùng song song với một đường thẳng thứ ba thì chúng song song với nhau. BÀI 7 . ĐỊNH LÍ + Một tính chất được khẳng định là đúng bằng suy luận gọi là một định lí. + Giả thiết của định lí là điều cho biết. Kết luận của định lí là điều được suy ra. + Chứng minh định lí là dùng luận để từ giả thiết suy ra kết luận. ĐỀ KIỂM TRA HÌNH HỌC 7 CHƯƠNG 1
Các dạng toán và phương pháp giải Toán 7 - Ngô Văn Thọ
Tài liệu gồm 166 trang phân dạng và hướng dẫn phương pháp giải Toán 7 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : A. PHẦN ĐẠI SỐ CHUYÊN ĐỀ I . SỐ HỮU TỈ + Dạng 1. Thực hiện phép tính + Dạng 2. Biểu diễn số hữu tỉ trên trục số + Dạng 3. So sánh số hữu tỉ + Dạng 4. Tìm điều kiện để một số là số hữu tỉ dương, âm, là số 0 (không dương không âm) + Dạng 5. Tìm các số hữu tỉ nằm trong một khoảng + Dạng 6. Tìm x để biểu thức nguyên + Dạng 7. Các bài toán tìm x + Dạng 8. Các bài toán tìm x trong bất phương trình + Dạng 9. các bài toán tính tổng theo quy luật CHUYÊN ĐỀ II . GIÁ TRỊ TUYỆT ĐỐI + Dạng 1. Tính giá trị biểu thức và rút gọn biểu thức + Dạng 2. |A(x)| = k (Trong đó A(x) là biểu thức chứa x, k là một số cho trước) + Dạng 3. |A(x)| = |B(x)| (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 4. |A(x)| = B(x) (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 5. Đẳng thức chứa nhiều dấu giá trị tuyệt đối + Dạng 6. Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt + Dạng 7. Dạng hỗn hợp + Dạng 8. |A| + |B| = 0 + Dạng 9. |A| + |B| = |A + B| + Dạng 10. |f(x)| > a + Dạng 11. Tìm x sao cho |f(x)| < a + Dạng 12. Tìm cặp giá trị (x; y) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối + Dạng 13. |A| + |B| < m với m > 0 + Dạng 14. Sử dụng bất đẳng thức. |a| + |b| ≥ |a + b| xét khoảng giá trị của ẩn số + Dạng 15. Sử dụng phương pháp đối lập hai vế của đẳng thức + Dạng 16. Tìm GTLN – GTNN của biểu thức CHUYÊN ĐỀ III . LŨY THỪA + Dạng 1. Tính giá trị biểu thức + Dạng 2. Các bài toán tìm x + Dạng 3. Các bài toán so sánh + Dạng 4. Các bài toán chứng minh chia hết CHUYÊN ĐỀ IV . TỈ LỆ THỨC + Dạng 1. Lập tỉ lệ thức từ các số đã cho + Dạng 2. Tìm x từ tỉ lệ thức + Dạng 3. Chứng minh tỉ lệ thức + Dạng 4. Cho dãy tỉ số bằng nhau và một tổng, tìm x, y + Dạng 5. Cho dãy tỉ số, tính giá trị một biểu thức + Dạng 6. Cho dãy tỉ số bằng nhau và một tích, tìm x, y + Dạng 7. Ứng dụng tỉ lệ thức chứng minh bất đẳng thức CHUYÊN ĐỀ V . TỈ LỆ THUẬN – TỈ LỆ NGHỊCH + Dạng 1. Tính hệ số tỉ lệ, biểu diễn x theo y, tính x (hoặc y) khi biết y (hoặc x) + Dạng 2. Cho x và y tỉ lệ thuận hoặc tỉ lệ nghịch, hoàn thành bảng số liệu + Dạng 3. Nhận biết hai đại lượng có tỉ lệ thuận hay tỉ lệ nghịch + Dạng 4.Cho x tỉ lệ thuận (tỉ lệ nghịch) với y, y tỉ lệ thuận (tỉ lệ nghịch) với z. Hỏi mối quan hệ của x và z và tính hệ số tỉ lệ + Dạng 5. Các bài toán đố [ads] CHUYÊN ĐỀ VI . CĂN BẬC 2 + Dạng 1. Tính giá trị biểu thức và viết căn bậc hai của một số + Dạng 2. So sánh hai căn bậc hai + Dạng 3. Tìm x biết √f(x) = a + Dạng 4. Tìm điều kiện xác định của các biểu thức chứa căn + Dạng 5. Chứng minh một số là số vô tỉ ĐỔI SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN RA PHÂN SỐ TỐI GIẢN SỐ THẬP PHÂN HỮU HẠN – SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN + Dạng 1. Nhận biết một phân số là số thập phân hữu hạn hay vô hạn tuần hoàn + Dạng 2. Viết một phân số hoặc một tỉ số dưới dạng số thập phân + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản CHUYÊN ĐỀ VII . HÀM SỐ VÀ ĐỒ THỊ + Dạng 1. Xác định xem đại lượng y có phải là hàm số của đại lượng x không + Dạng 2.Tính giá trị của hàm số tại giá trị của một biến cho trước + Dạng 3. Tìm tọa độ một điểm và vẽ một điểm đã biết tọa độ, tìm các điểm trên một đồ thị hàm số, biểu diễn các điểm lên hình và tính diện tích + Dạng 4. Tìm hệ số a của đồ thị hàm số y = ax + b khi biết một điểm đi qua + Dạng 5. Kiểm tra một điểm có thuộc đồ thị hàm số hay không + Dạng 6. Cách lấy 1 điểm thuộc đồ thị và vẽ đồ thị hàm số y = ax, y = ax + b, đồ thị hàm trị tuyệt đối + Dạng 7. Tìm giao điểm của 2 đồ thị y = f(x) và y = g(x). Chứng minh và tìm điều kiện để 3 đường thẳng đồng quy + Dạng 8. Chứng minh 3 điểm thẳng hàng + Dạng 9. Cho bảng số liệu, hỏi hàm số xác định bởi công thức nào, hàm số là đồng biến hay nghịch biến + Dạng 10. Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc CHUYÊN ĐỀ VIII . THỐNG KÊ + Dạng 1. Khai thác thông tin từ bảng thống kê + Dạng 2. Lập bảng tần số và rút ra nhận xét + Dạng 3. Dựng biểu đồ đoạn thẳng hoặc biểu đồ hình chữ nhật + Dạng 4. Vẽ biểu đồ hình quạt + Dạng 5. Tính số trung bình cộng, tìm Mốt của dấu hiệu CHUYÊN ĐỀ IX . BIỂU THỨC ĐẠI SỐ + Dạng 1. Đọc và viết biểu thức đại số theo yêu cầu bài toán + Dạng 2. Tính giá trị biểu thức đại số + Dạng 3. Tìm GTLN, GTNN + Dạng 4. Bài tập đơn thức + Dạng 5. Bài tập đa thức + Dạng 6. Đa thức một biến + Dạng 7. Tìm nghiệm của đa thức 1 biến + Dạng 8. Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a B. PHẦN HÌNH HỌC CHUYÊN ĐỀ I . ĐƯỜNG THẲNG VUÔNG GÓC VÀ ĐƯỜNG THẲNG SONG SONG. GÓC ĐỐI ĐỈNH CHUYÊN ĐỀ II . TAM GIÁC. TỔNG BA GÓC CỦA MỘT TAM GIÁC CHUYÊN ĐỀ III . QUAN HỆ GIỮA CÁC YẾU TỐ CỦA TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY TRONG TAM GIÁC