Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Hải Phòng

Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Hải Phòng Đề thi tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Hải Phòng Các em học sinh thân mến, hôm nay Sytu xin giới thiệu đến quý thầy cô và các em đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023-2024 sở Giáo dục và Đào tạo thành phố Hải Phòng. Kỳ thi sẽ diễn ra vào ngày thứ Bảy 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Hải Phòng: Một quyển vở giá 14,000 đồng, một hộp bút giá 30,000 đồng. Minh muốn mua 01 hộp bút và một số quyển vở. a) Gọi x (x thuộc N*) là số quyển vở Minh mua, y là số tiền cần trả khi mua x quyển vở và 01 hộp bút. Biểu diễn y theo x. b) Nếu Minh có 300,000 đồng để mua vở và 01 hộp bút thì Minh mua được tối đa bao nhiêu quyển vở? Một trường học có mảnh vườn hình chữ nhật. Chu vi của mảnh vườn là 100m. Nhà trường mở rộng mảnh vườn bằng cách tăng chiều dài thêm 5m và chiều rộng thêm 4m, diện tích tăng thêm 240m2. Tính chiều dài và chiều rộng của mảnh vườn trước khi mở rộng. Một chi tiết máy gồm một phần hình trụ và một phần hình nón. Chu vi đáy của phần hình trụ là 37,68cm. Tính thể tích của chi tiết máy đó (pi ≈ 3,14; kết quả làm tròn đến chữ số thập phân thứ 2). Với nội dung bài thi đa dạng và thú vị như vậy, các em hãy cố gắng ôn tập và chuẩn bị tốt để đạt kết quả cao trong kỳ thi sắp tới nhé. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 của sở GD&ĐT Phú Yên Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 của sở GD&ĐT Phú Yên Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Phú Yên bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi sẽ diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Phú Yên: 1. Cho đường tròn (O; R), lấy điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ hai tiếp tuyến AM, AN (M, N là các tiếp điểm) và cát tuyến ABC (AB < AC). Gọi I là trung điểm của BC, T là giao điểm của NI với (O) (T khác N). - Chứng minh rằng tam giác AMN đều. - Chứng minh rằng MT // AC. - Tiếp tuyến của (O) tại B, C cắt nhau ở K. Chứng minh rằng ba điểm K, M, N thẳng hàng. 2. Tìm cặp số (x; y) thỏa mãn phương trình x2 + y2 + 8x + y − 2xy + 3 = 0 sao cho y đạt giá trị lớn nhất. 3. Cho hình vuông ABCD. Gọi E, F lần lượt là trung điểm của CD, AD và G là giao điểm của AE và BF. - Chứng minh rằng FED = FGD. - Gọi H là điểm đối xứng với F qua G, I là giao điểm của BD và EF. Đường thẳng qua D, song song với BF cắt HI tại K. Chứng minh rằng K là trực tâm của tam giác G. Các bài toán trong đề tuyển sinh này đều đòi hỏi học sinh có kiến thức sâu về các khái niệm toán học cơ bản như tam giác, đường tròn, hình vuông, và kỹ năng suy luận, chứng minh logic. Đây là cơ hội để các thí sinh thể hiện năng lực và sự am hiểu vững chắc về môn Toán.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Ninh Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình Bạn đã sẵn sàng thử thách bản thân với đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT Ninh Bình chưa? Đề thi gồm 5 bài toán dạng tự luận đầy hấp dẫn, sẽ đưa bạn vào thế giới của kiến thức và logic Toán học. Thời gian làm bài thi là 150 phút, đủ để bạn thể hiện khả năng và kiến thức của mình. Kì thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020, cùng chờ đón những phút giây căng thẳng và hồi hộp để thử sức mình nhé! Một trong những bài toán thú vị trong đề thi là bài toán về đường tròn và các điểm P, A, B, C, D, N, Q, O. Hãy thử sức với các yêu cầu "nhạy cảm" như chứng minh tứ giác AOBQ nội tiếp đường tròn, chứng minh ANP = BNP và bốn điểm O, D, C, N cùng nằm trên một đường tròn, hay chứng minh rằng đường trung trực của đoạn ON luôn đi qua một cố định khi P di động trên đoạn thẳng AB. Bên cạnh đó, đề thi cũng đưa ra các bài toán khác như tìm số nguyên n để n2 + 2022 là số chính phương, và tìm m sao cho phương trình x2 − 2mx + 2m − 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 4x1 = x22. Đừng bỏ lỡ cơ hội thử thách bản thân và khám phá những bí mật của Toán học thông qua đề thi tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình. Hãy tự tin và cố gắng hết mình, thành công sẽ đến với những ai không ngần ngại khó khăn!
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Tiền Giang Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Tiền Giang Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Tiền Giang bao gồm 4 bài toán dạng tự luận trên 1 trang, thí sinh có 150 phút để hoàn thành bài thi. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Tiền Giang: Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x^2 và đường thẳng (d) : y = 2mx + 1, với m là tham số. Tìm tất cả các giá trị của m sao cho (d) cắt (P) tại hai điểm phân biệt A, B sao cho OI = √10, với I là trung điểm của AB. Cho phương trình bậc hai (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0 có nghiệm kép, trong đó x là ẩn số và a, b, c là các tham số. Chứng minh rằng a = b = c. Cho x, y là các số thực thay đổi thỏa mãn điều kiện x^2 + y^2 + xy = 3. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức M = x^2 + y^2 - xy. Đề tuyển sinh chuyên Toán năm nay mang đến những bài toán thách thức và đa dạng, giúp thí sinh phát huy khả năng tư duy logic và giải quyết vấn đề. Hãy cùng chuẩn bị kỹ càng để đạt kết quả tốt trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Đồng Nai có đặc điểm nổi bật là gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn nội dung các câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2020 – 2021: Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Chứng minh các điều kiện sau: Tứ giác ALMO nội tiếp đường tròn, và chứng minh LD là tiếp tuyến của (O). MH vuông góc với AK, suy ra KH vuông góc với AM. Ba điểm A, N, D thẳng hàng. Đề thi tuyển sinh này không chỉ đánh giá kiến thức mà còn đòi hỏi sự linh hoạt, logic và khả năng suy luận của thí sinh. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!