Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 7 năm 2022 2023 cụm chuyên môn 3T-H-G Bình Xuyên Vĩnh Phúc

Nội dung Đề HSG Toán 7 năm 2022 2023 cụm chuyên môn 3T-H-G Bình Xuyên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề HSG Toán 7 năm 2022 2023 cụm chuyên môn 3T-H-G Bình Xuyên Vĩnh Phúc Đề HSG Toán 7 năm 2022 2023 cụm chuyên môn 3T-H-G Bình Xuyên Vĩnh Phúc Chào mừng quý thầy cô giáo và các em học sinh lớp 7! Đây là đề thi chọn học sinh giỏi cấp trường môn Toán lớp 7 năm học 2022 – 2023 của cụm chuyên môn 3T-H-G Bình Xuyên, Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ Đề HSG Toán lớp 7 năm 2022 – 2023: 1. Ba lớp 7A, 7B, 7C cùng tham gia trồng cây trong vườn trường. Ban đầu, số cây được phân chia theo tỉ lệ 5:6:7. Tuy nhiên, sau đó, tỉ lệ được thay đổi thành 4:5:6 và do đó một lớp trồng nhiều hơn dự định 4 cây. Hãy tính tổng số cây mà ba lớp đã trồng. 2. Cho tam giác ABC có ba góc nhọn và AB = AC. Vẽ các tam giác đều ABD và ACE về phía ngoài tam giác ABC. a) Chứng minh rằng DC = BE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng tam giác AMN là tam giác đều. 3. Cho tam giác ABC cân tại A, D là trung điểm của AC. Trên đoạn BD, chọn điểm E sao cho tam giác DAE là tam giác vuông cân tại A. Chứng minh rằng tam giác DAE và ECB là tam giác cùng điểm công. Hy vọng những câu hỏi trên sẽ giúp các em rèn luyện kỹ năng giải bài toán và nắm vững kiến thức Toán 7. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 7 cấp huyện năm 2015 - 2016 phòng GDĐT Sông Lô - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề HSG Toán 7 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 7 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của DK. + Có sáu túi lần lượt chứa 18, 19, 21, 23, 25 và 34 bóng. Một túi chỉ chứa bóng đỏ trong khi năm túi kia chỉ chứa bóng xanh. Bạn Toán lấy ba túi, bạn Học lấy hai túi. Túi còn lại chứa bóng đỏ. Biết lúc này bạn Toán có số bóng xanh gấp đôi số bóng xanh của bạn Học. Tìm số bóng đỏ trong túi còn lại. + Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này?
Đề khảo sát HSG Toán 7 lần 2 năm 2015 - 2016 trường THCS Bồ Lý - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 lần 2 năm 2015 – 2016 trường THCS Bồ Lý – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho một dãy số gồm tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 30 là: -29, -28, -27, …, -1, 0, 1, …,27, 28, 29. Các số nguyên trên được đánh số thứ tự một cách tùy ý. Lấy mỗi số đó trừ đi số thứ tự của nó ta được một hiệu. Hãy tính tổng của tất cả các hiệu đó. + Cho tam giác ABC vuông tại A, đường cao AH (H BC). Về phía ngoài của tam giác ABC vẽ các tam giác ABE vuông cân tại B và tam giác ACF vuông cân tại C. Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh rằng: a) 0 BAH EBC 180 từ đó suy ra BAI EBC. b) BI = CE và ba điểm E, A, F thẳng hàng. c) Ba đường thẳng AH, CE, BF cắt nhau tại một điểm. + Cho a, b là các số hữu tỉ khác 0, thỏa mãn điều kiện: a ab a b b. Tính giá trị của biểu thức 2 2 Ta b.
Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Yên Lập - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh: a) K là trung điểm của AC. b) KMC là tam giác đều. c) Cho BK = 2cm. Tính các cạnh AKM. + Tìm nghiệm nguyên dương của phương trình x + y + z = xyz.