Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm thể tích khối đa diện và khoảng cách có lời giải chi tiết - Phạm Văn Huy

Tài liệu gồm 120 trang, với các bài toán trắc nghiệm thuộc chuyên đề thể tích khối đa diện và khoảng cách, các bài toán có đáp án và lời giải chi tiết. + Chủ đề 1. Thể tích (Gồm 113 bài toán) + Chủ đề 2. Khoảng cách (Gồm 31 bài toán) + Chủ đề 3. Mặt trụ – Hình trụ – Khối trụ (Gồm 40 bài toán) + Chủ đề 4. Mặt cầu – Hình cầu – Khối cầu (Gồm 44 bài toán) [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, G là trọng tâm tam giác ABC, SG ⊥ (ABC). Biết góc giữa SM và mặt phẳng (ABC) bằng 30 độ (với M là trung điểm của BC), BC = 2a và AB = 5a. Tính 9V/a^3 với V là thể tích khối chóp S.ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a. Cạnh bên SA vuông góc với mặt phẳng đáy, SC tạo với mặt phẳng đáy một góc 45 độ và SC = 2a√2. Thể tích khối chóp S.ABCD bằng? + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy góc 60 độ. Gọi M là điểm đối xứng với C qua D và N là trung điểm của SC. Tính tỉ số thể tích giữa hai phần của hình chóp do mặt phẳng (BMN) tạo ra khi cắt hình chóp.

Nguồn: toanmath.com

Đọc Sách

Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích
Nội dung Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Bản PDF - Nội dung bài viết Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Cuốn sách Chinh phục điểm 8 – 9 – 10 bài tập trắc nghiệm Giải tích có 338 trang được biên soạn bởi các tác giả Mẫn Ngọc Quang, Đỗ Xuân Sỹ, Phạm Minh Tuấn nhằm mục đích giúp các em học sinh luyện tập các dạng toán vận dụng cao thường gặp trong đề thi THPT Quốc gia môn Toán. Nội dung sách được chia thành 8 phần cụ thể để học sinh dễ dàng theo dõi và ôn tập. Phần 1 tập trung vào các nội dung liên quan đến hàm số nâng cao, bao gồm cách giải nhanh, các phương pháp chứng minh, và các bài toán áp dụng. Phần 2 tập trung vào bài toán thực tế và tối ưu kinh doanh để học sinh hiểu rõ ứng dụng của toán học trong cuộc sống. Phần 3 tập trung vào mũ và logarit nâng cao, giúp học sinh nắm vững kiến thức cơ bản và ứng dụng chúng vào các bài toán phức tạp. Phần 4 tập trung vào tích phân ứng dụng và cách sử dụng Casio để tính toán một cách nhanh chóng và chính xác. Phần 5 bàn về biểu thức tổ hợp và nhị thức Newton, phần 6 tập trung vào số phức và các phương pháp tính toán liên quan. Phần 7 tập trung vào xác suất và luyện tập bài toán cao cấp. Phần 8 tập trung vào tính liên tục của hàm số để học sinh có cái nhìn tổng quan về toán học phổ biến và ứng dụng rộng rãi. Tổng thể, cuốn sách này là một tài liệu hữu ích cho học sinh muốn nắm vững và áp dụng kiến thức giải tích vào thực tế, cung cấp đầy đủ các dạng bài tập và phương pháp giải chi tiết, phù hợp cho việc ôn tập và rèn luyện kỹ năng toán học của học sinh.