Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia lần 1 năm 2019 trường THPT Tứ Kỳ - Hải Dương

Nhằm giúp học sinh khối 12 làm quen với hình thức và cấu trúc đề thi THPT Quốc gia môn Toán, tạo điều kiện để các em được rèn luyện, nâng cao kỹ năng giải Toán, ôn tập lại các kiến thức Toán 10 và Toán 11, hôm nay (Chủ Nhật ngày 02 tháng 12 năm 2018), trường THPT Tứ Kỳ – Hải Dương đã tổ chức kỳ thi thử Toán THPT Quốc gia lần 1 năm 2019, đề thi có mã đề 001 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh làm bài trong thời gian 90 phút, đề thi có đáp án đầy đủ các mã đề 001, 002, 003, 004 và lời giải chi tiết. Trích dẫn đề thi thử Toán THPT Quốc gia lần 1 năm 2019 trường THPT Tứ Kỳ – Hải Dương : + Do thời tiết ngày càng khắc nghiệt, và nhà cách xa trường THPT Tứ Kỳ – Hải Dương, nên một thầy giáo muốn sau đúng 5 năm nữa có 500 triệu đồng để mua ô tô đi làm. Để đạt được nguyện vọng, thầy giáo đó có ý định mỗi tháng dành ra một số tiên cố định để gửi vào ngân hàng (theo hình thức lãi kép) với lãi suất là 0,5%/ tháng. Hỏi số tiền ít nhất cần dành ra mỗi tháng để gửi tiết kiệm là bao nhiêu (chọn đáp án gần nhất với số tiền thực). [ads] + Một công ty cần xây một cái kho chứa hàng dạng hình hộp chữ nhật bằng vật liệu gạch và xi măng có thể tích 2000m, đáy là hình chữ nhật có chiều dài bằng hai lần chiều rộng. Người ta cần tính toán sao cho chi phí xây dựng là thấp nhất, biết giá xây dựng là 500.000đ/m2. Khi đó chi phí thấp nhất gần với số nào dưới đây? + Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trong tâm các tam giác BCD và ACD. Trong các khẳng định sau, khẳng định nào sai: A. G1G2 = 2/3AB. B. G1G2 // (ABD). C. G1G2 // (ABC). D. BG1, AG2 và CD đồng quy.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn - Vĩnh Phúc lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn – Vĩnh Phúc lần 1 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Để số tiền chi phí thấp nhất mà công ty phải thì khoảng cách từ A đến D là bao nhiêu km, biết rằng chi phí để hoàn thành mỗi km đường ống trên bờ là 100 triệu đồng và dưới nước là 260 triệu đồng. A. 8 km B. 5 km C. 7,5 km D. 6,5 km [ads] + Từ các chữ số 0,1, 2,3, 4,5,6,7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ? A. 2448 B. 3600 C. 2324 D. 2592 + Khẳng định nào sau đây là đúng? A. Hàm số y = tanx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx đồng biến trên khoảng (0; π) C. Hàm số y = cotx nghịch biến trên khoảng (0; π) D. Hàm số y = cosx đồng biến trên khoảng (0; π)
Đề thi thử THPT Quốc gia lần 1 năm học 2017 - 2018 môn Toán trường THPT Yên Lạc 2 - Vĩnh Phúc
Đề thi thử THPT Quốc gia lần 1 năm học 2017 – 2018 môn Toán trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 8 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Đồ thị của hàm số y = x^3 – 3x cắt: A. Đường thẳng y = 3 tại hai điểm B. Đường thẳng y = −4 tại hai điểm C. Đường thẳng y = 5/3 tại ba điểm D. Trục hoành tại một điểm [ads] + Giả sử tỉ lệ tăng giá xăng của Việt Nam trong 10 năm qua là 5%/ năm. Hỏi nếu năm 2007, giá xăng là 12000VND/lít thì năm 2017 giá xăng là bao nhiêu? A. 17616,94 B. 18615,94 C. 19546,74 D. 12600 + Cho hàm số y = f(x) xác định trên khoảng K. Điều kiện đủ để hàm số y = f(x) đồng biến trên K là: A. f'(x) > 0 với mọi x ∈ K B. f'(x) > 0 tại hữu hạn điểm thuộc khoảng K C. f'(x) ≤ 0 với mọi x ∈ K D. f'(x) ≥ 0 với mọi x ∈ K
Đề thi khảo sát chuyên đề Toán 12 lần 1 năm học 2017 - 2018 trường THPT Nguyễn Thị Giang - Vĩnh Phúc
Đề thi khảo sát chuyên đề Toán 12 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Chọn phát biểu đúng khi nói về tính đơn điệu của hàm số y = ax^4 + bx^2 + c (a ≠ 0) A. Khi a > 0 thì hàm số luôn đồng biến B. Khi a < 0 hàm số có thể nghịch biến trên R C. Hàm số luôn tồn tại đồng thời khoảng đồng biến và nghịch biến D. Hàm số có thể đơn điệu trên R [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau B. Hai khối chóp có chiều cao và diện tích đáy tương ứng bằng nhau thì có thể tích bằng nhau C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau + Trong các mệnh đề sau, mệnh đề nào đúng? A. Số đỉnh và số mặt của một hình đa diện luôn bằng nhau B. Tồn tại hình đa diện có số cạnh và số mặt bằng nhau C. Tồn tại hình đa diện có số cạnh bằng nhau D. Tồn tại hình đa diện có số đỉnh và số mặt bằng nhau
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Thanh Miện - Hải Dương lần 1
Đề thi thử môn Toán 2018 lần 1 trường THPT Thanh Miện – Hải Dương gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Một người đàn ông muốn chèo thuyền từ vị trí X tới vị trí Z về phía hạ lưu bờ đối diện càng nhanh càng tốt, trên một dòng sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền trực tiếp qua sông để đến H rồi sau đó chạy đến Z, hay có thể chèo thuyền trực tiếp đến Z, hoặc anh ta có thể chèo thuyền đến một điểm Y giữa H và Z và sau đó chạy đến Z. Biết anh ấy chèo thuyền với vận tốc 6 km/h, chạy với vận tốc 8 km/h, quãng đường HZ = 8 km và tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Tìm khoảng thời gian ngắn nhất (đơn vị: giờ) để người đàn ông đến Z. A. 9√7 B. √73/6 C. 1 + √7/8 D. 3/2 [ads] + Phát biểu nào sau đây là đúng? A. Hình hai mươi mặt đều có 20 đỉnh, 30 cạnh, 12 mặt B. Hình hai mươi mặt đều có 30 đỉnh, 12 cạnh, 20 mặt C. Hình hai mươi mặt đều có 30 đỉnh, 20 cạnh, 12 mặt D. Hình hai mươi mặt đều có 12 đỉnh, 30 cạnh, 20 mặt + Cho hàm số y = f(x) liên tục trên R, có đồ thị (C) như hình vẽ bên. Khẳng định nào sau đây là đúng? A. Tổng các giá trị cực trị của hàm số bằng 7 B. Giá trị lớn nhất của hàm số là 4 C. Đồ thị (C) không có điểm cực đại nhưng có hai điểm cực tiểu là (−1; 3) và (1; 3) D. Đồ thị (C) có ba điểm cực trị tạo thành một tam giác vuông cân