Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Thủy Nguyên - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thủy Nguyên, thành phố Hải Phòng; đề thi gồm 02 trang với 06 bài toán hình thức tự luận, thời gian làm bài 120 phút. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2023 – 2024 phòng GD&ĐT Thủy Nguyên – Hải Phòng : + Giá một hộp bánh là 120 000 đồng. Kỉ niệm ngày giải phóng miền Nam 30 tháng 4, cửa hàng đưa ra chương trình khuyến mãi giảm 20% giá khi mua từ hộp bánh thứ 2 trở đi so với hộp bánh ban đầu. a) Gọi số hộp bánh mua được là x, số tiền phải trả là y (đồng). Hãy biểu diễn y theo x. b) Để mua 4 hộp bánh nói trên bạn An phải trả bao nhiêu tiền? + Bài toán thực tế: Quãng đường AB dài 115km. Một người đi xe đạp từ A đến B, sau đó 20 phút một người đi xe máy từ B về A và hai người gặp nhau tại một địa điểm cách B 75km. Tìm vận tốc của mỗi xe biết vận tốc xe đạp nhỏ hơn vận tốc xe máy là 25km/h. + Người ta dự định làm một chiếc bồn chứa dầu bằng inox hình trụ có chiều cao 2m, đường kính đáy 1,4m. Hỏi chiếc bồn đó chứa đầy được bao nhiêu lít dầu (Bỏ qua bề dày của bồn, lấy pi = 3,14).

Nguồn: toanmath.com

Đọc Sách

Đề KSCL vòng 5 Toán 9 năm 2021 - 2022 trường THCS Cát Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng vòng 5 môn Toán 9 năm học 2021 – 2022 trường THCS Cát Linh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 05 năm 2022. Trích dẫn đề KSCL vòng 5 Toán 9 năm 2021 – 2022 trường THCS Cát Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = (m + 1)x + 2 với x là biến số và m là tham số. a/ Chứng minh với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b/ Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1 và x2. Tìm m để x12 + x1 + (m + 2)x2 = 14. + Cho đường tròn (O;R) đường kính AB và CD vuông góc với nhau, điểm E di động trên cung nhỏ BC. Đoạn thẳng AE cắt đoạn thẳng CD và CB lần lượt tại M và N. Đoạn thẳng ED cắt AB tại H. 1/ Chứng minh tứ giác EBHN nội tiếp. 2/ Chứng minh BN.BC = BH.BA. 3/ Chứng minh diện tích tứ giác AMHD không đổi, từ đó suy ra vị trí của điểm E để diện tích tam giác EMH lớn nhất. + Cho ba số x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 3. Chứng minh rằng?
Đề KSCL Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 05 năm 2022.
Đề KSCL Toán 9 cuối năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 cuối năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn đề KSCL Toán 9 cuối năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho phương trình: x2 – 4x + m + 5 = 0 (1) a) Tìm giá trị tham số m để phương trình (1) có nghiệm b) Tìm giá trị tham số m để phương trình (1) có hai nghiệm dương x2 và x2 thỏa mãn. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Để chuẩn bị cho SEA Games 31 diễn ra từ ngày 12/5/2022 đến 23/5/2022 tại Việt Nam, Ban tổ chức tuyển chọn được 3000 tình nguyện viên (TNV) cả nam và nữ đáp ứng trình độ tiếng Anh B1. Nếu tăng yêu cầu tiếng Anh lên trình độ B2 thì số TNV nam giảm 20%, nữ giảm 10% và do đó tổng số TNV chỉ còn 2580 người. Hỏi Ban tổ chức đã tuyển chọn được bao nhiêu tình nguyện viên nam, bao nhiêu TNV nữ theo tiêu chuẩn ban đầu? + Từ điểm A bên ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC và cát tuyết AEF (B và C là tiếp điểm, tia AF nằm giữa hai tia AB và AO, E nằm giữa A và F). Gọi I là giao điểm của AO và BC, K là trung điểm của EF a) Chứng minh tứ giác ABOC nội tiếp b) Biết OB = 3cm, BOC = 120. Tính độ dài cung tròn BEC c) Đường thẳng đi qua K song song với BF cắt BC ở M. Chứng minh rằng KMC = KEC d) Tia FM cắt AB tại N. Chứng minh N là trung điểm của AB.
Đề KSCL Toán 9 lần 1 năm 2021 - 2022 phòng GDĐT Mê Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh lớp 9 môn Toán lần 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Trích dẫn đề KSCL Toán 9 lần 1 năm 2021 – 2022 phòng GD&ĐT Mê Linh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi I chảy trong 4 giờ rồi khóa lại và mở tiếp vòi II chảy trong 3 giờ thì được 3/10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể? + Tính diện tích tường nhà cần phải quét vôi của một căn phòng hình hộp chữ nhật có chiều dài 5 m, chiều rộng 4 m, chiều cao 4 m; biết diện tích để làm cửa đi và cửa sổ chiếm 20% diện tích tường. + Cho phương trình m2x – 2(m + 1)x + 1 = 0 (*) với m là tham số. a) Tìm giá trị của m để phương trình (*) có nghiệm bằng 2 b) Tìm giá trị nguyên nhỏ nhất của m để phương trình (*) có hai nghiệm phân biệt.