Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Đồng Nai

Nội dung Đề học sinh giỏi tỉnh lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Đồng Nai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 chuyên năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2022. Trích dẫn đề học sinh giỏi tỉnh Toán lớp 12 chuyên năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Tam giác ABC nhọn không cân có M là trung điểm BC và P là điểm di chuyển trên đoạn thẳng AM. Đường tròn ngoại tiếp tam giác APB cắt đường thẳng AC ở E; đường tròn ngoại tiếp tam giác APC cắt đường thẳng AB ở F. Lấy T khác A trên AM sao cho A E F T đồng viên 1) Chứng minh tâm I của đường tròn ngoại tiếp tam giác AEF thuộc một đường thẳng cố định khi P di động trên AM 2) Lấy K đối xứng A qua IM, giả sử KT cắt AB ở X, KE cắt AM ở Y và EF cắt BC cắt ở G. Chứng minh XY qua G. + Cho số nguyên dương n và một dãy tăng các số nguyên dương sao cho với mọi chia hết cho aj – ai. Chứng minh rằng là một dãy không tăng. + Cho đa thức hệ số thực f(x) có 4 nghiệm dương phân biệt nhỏ hơn 8. Phương trình f(x5 – 5x + 4) = 0 có bao nhiêu nghiệm thực? Tại sao?

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Bình Dương
Nội dung Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Năm ngày 20 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho dãy số (an) được xác định bởi a1 = a > 1và a_n+1 a) Tìm giới hạn của dãy số (an). b) Với n thuộc N*, đặt Sn = ak. Hãy tìm giới hạn của dãy số (Sn). + Trong mặt phẳng, cho 2023 điểm sao cho không có 3 điểm nào thẳng hàng. Hỏi: a) Có ít nhất bao nhiêu tam giác không cân được tạo thành. b) Chứng minh rằng có thể chọn ra một tập con gồm 45 điểm sao cho trong đó không có 3 điểm nào tạo thành một tam giác đều. + Cho tam giác ABC nhọn nội tiếp đường tròn (O) có B, C cố định và A thay đổi trên (O). D là trung điểm BC. BE, CF là các đường cao của tam giác ABC. Hai đường tròn (DBF) và (DCE) cắt nhau tại điểm thứ hai là K. a) Chứng minh rằng K luôn thuộc đường tròn cố định. b) Lấy T trên (O) sao cho KT vuông góc BC và A, T khác phía với BC. Các đường thẳng AB, BT cắt lại đường tròn (AKT) lần lượt tại M, N. Gọi I là trung điểm MN. Chứng minh rằng đường tròn (ATI) luôn đi qua điểm cố định.
Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 19 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán lớp 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hải Dương : + Một nhóm 15 học sinh gồm 6 học sinh lớp A, 5 học sinh lớp B, 4 học sinh lớp C. Lấy ngẫu nhiên 7 học sinh trong nhóm trên. Tính xác suất để 7 học sinh lấy ra có đủ cả 3 lớp và số học sinh lớp B bằng số học sinh lớp C. + Cho tam giác ABC vuông cân tại A có trọng tâm G; gọi E, H lần lượt là trung điểm của AB, BC. D là điểm đối xứng với H qua A, I là giao điểm của đường thẳng AB và đường thẳng CD. Biết D(-1;-1), đường thẳng IG có phương trình 6 3 7 0 x y và điểm E có hoành độ bằng 1. Tìm tọa độ các đỉnh của tam giác ABC. + Cho hình lập phương 1 1 1 1 ABCD ABC D có cạnh bằng a. Đường thẳng d đi qua D1 và tâm O của hình vuông BCC B1 1. Đoạn thẳng MN có trung điểm K thuộc đường thẳng d, biết M thuộc mặt phẳng (BCC B1 1), N thuộc mặt phẳng (ABCD). Tìm giá trị nhỏ nhất của độ dài đoạn thẳng MN.
Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Cho tam giác ABC nội tiếp đường tròn (O) với AB AC. Trung tuyến xuất phát từ đỉnh A và đường phân giác trong của góc A cắt BC lần lượt tại M và N. Đường thẳng qua N và vuông góc với AN cắt đường thẳng AB, AM lần lượt tại P và Q; đường thẳng qua P và vuông góc với AB cắt đường thẳng AN tại R. Chứng minh QR vuông góc với BC. + Tìm hiểu kết quả học tập ở một lớp học người ta thấy: Hơn 7 10 số học sinh đạt điểm giỏi ở môn Toán cũng đồng thời đạt điểm giỏi ở môn Ngữ văn. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Ngữ văn cũng đồng thời đạt điểm giỏi ở môn Lịch sử. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Lịch sử cũng đồng thời đạt điểm giỏi ở môn Tiếng Anh. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Tiếng Anh cũng đồng thời đạt điểm giỏi ở môn Toán. Chứng minh trong lớp có ít nhất một học sinh đạt điểm giỏi ở cả bốn môn Toán, Ngữ văn, Lịch sử, Tiếng Anh. + Cho hàm số 3 2 f x m x m x x 1 1 3 6 5 và 2 0 max 1 f x f với m là tham số thực. Tìm giá trị nhỏ nhất của hàm số f x trên đoạn −2 0.
Đề chọn đội tuyển HSG môn Toán năm 2022 2023 sở GD ĐT Đắk Nông
Nội dung Đề chọn đội tuyển HSG môn Toán năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông. Trích dẫn Đề chọn đội tuyển HSG môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Cho phương trình ax3 + 27×2 + 12x + 2022 = 0 có 3 nghiệm thực phân biệt. Hỏi phương trình sau có bao nhiêu nghiệm thực: 4 (ax3 + 27×2 + 12x + 2022)(3ax + 27) = (3ax2 + 54x + 12)2 với a khác 0. + Cho hai đường tròn (O1) và (O2) tiếp xúc trong tại M (đường tròn (O2) nằm trong). Hai điểm P và Q thuộc đường tròn (O2), qua P kẻ tiếp tuyến với (O2) cắt (O1) tại B và D, qua Q kẻ tiếp tuyến với (O2) cắt (O1) tại A và C. Chứng minh rằng tâm đường tròn nội tiếp các tam giác ACD, BCD nằm trên PQ. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định. Đường thẳng d đi qua I lần lượt cắt cạnh AB, AC tại M, N. Tìm vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.