Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT TP Cao Lãnh Đồng Tháp

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT TP Cao Lãnh Đồng Tháp Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT TP Cao Lãnh - Đồng Tháp Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT TP Cao Lãnh - Đồng Tháp Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Cao Lãnh, tỉnh Đồng Tháp. Kỳ thi sẽ diễn ra vào ngày 18 tháng 12 năm 2022. Trích dẫn phần nội dung của đề thi: Nhân dịp ngày siêu khuyến mãi 12.12.2022, một siêu thị tại Cao Lãnh đã giảm giá lô hàng tivi từ giá niêm yết 7.400.000 đồng/cái. Sau khi giảm 10% so với giá niêm yết, siêu thị bán được 10 cái tivi. Tiếp theo, sau khi giảm thêm 5% (so với giá giảm lần 1) siêu thị bán được 15 cái nữa. Cuối cùng, sau khi bán hết 25 cái tivi, siêu thị lời được 11.505.000 đồng. Hỏi giá vốn của một cái tivi là bao nhiêu tiền? Cho a và b là hai số thực phân biệt thỏa mãn \(a^4 + b^4 = 4\). Chứng minh rằng \(ab \leq 2\). Cho hình vuông ABCD có tâm O và cạnh bằng 6 cm, điểm M nằm trên cạnh BC. a) Khi BM = 2 cm, hạ OK vuông góc với AM tại K. Tính độ dài đoạn OK. b) Khi M thay đổi trên BC, N thay đổi trên CD sao cho \(\angle MAN = 45^{\circ}\) là giao điểm của AN và BD. Chứng minh tam giác AEM vuông cân và đường thẳng MN luôn tiếp xúc với một đường tròn cố định. Đây là một đề thi thú vị và đầy thử thách. Chúc các em học sinh lớp 9 thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Cầu Giấy Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội Chào các thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu với các bạn đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023 – 2024 tại trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày thứ Năm, 07 tháng 09 năm 2023. Dưới đây là một số câu hỏi trong đề thi: Cho x và y là các số nguyên dương thỏa mãn x^3 + y và x + y^3 cùng chia hết cho x^2 + y^2. Chứng minh rằng 2x + 2y là số chính phương. Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1. Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử? Chúc các em học sinh thực sự tự tin và thành công trong kỳ thi sắp tới. Hãy nỗ lực hết mình và chinh phục mọi thách thức trước mắt. Hy vọng rằng đây sẽ là cơ hội để các bạn khẳng định khả năng và tài năng của mình. Cố gắng lên, các bạn ạ!
Đề học sinh giỏi lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Tứ Kỳ Hải Dương
Nội dung Đề học sinh giỏi lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 vòng 2 năm 2022 - 2023 phòng GD&ĐT Tứ Kỳ - Hải Dương Đề học sinh giỏi Toán lớp 9 vòng 2 năm 2022 - 2023 phòng GD&ĐT Tứ Kỳ - Hải Dương Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: 1. Cho hai số nguyên dương x, y thỏa mãn: \(2x^2 + 2y^2 = xy + x + y + 1\). Chứng minh rằng x và y là hai số chính phương liên tiếp. Tìm các cặp số tự nhiên x, y thỏa mãn \(6x^2 + y^2 = yx + 30\). 2. Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE, CF cắt nhau tại H. Trên đoạn thẳng AD lấy điểm M sao cho ∠BMC = 90°. Gọi S, S', S'' lần lượt là diện tích các tam giác BAC, BMC, BHC. a) Chứng minh rằng: S = S' + S''. b) Gọi K, P lần lượt là hình chiếu của D trên BE, CF. Chứng minh rằng KP // EF. 3. Trên các cạnh BC, CA, AB của tam giác ABC lần lượt lấy các điểm M, N, P. Đặt S, S', S'' lần lượt là diện tích các tam giác ANP, BMP, CMN, ABC. Chứng minh rằng: \(3S = S' + 2S'' + 64\). Đề thi sẽ là cơ hội thử thách khả năng giải quyết bài toán và logic của các em học sinh. Hy vọng các em sẽ cố gắng hết mình để giải quyết các câu hỏi thú vị này. Chúc các em thành công!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Nam
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Sở GD&ĐT Quảng Nam Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Sở GD&ĐT Quảng Nam Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Quảng Nam. Kỳ thi sẽ diễn ra vào ngày 19 tháng 04 năm 2023. Tóm tắt nội dung đề thi: Cho tam giác ABC nhọn (AB < AC) có hai đường cao BE và CF, M là trung điểm của BC. Hạ MN vuông góc với EF tại N, hai đường thẳng MN và AB cắt nhau tại D. a) Chứng minh N là trung điểm của EF và DEF = MEC. b) Gọi K là giao điểm của hai đường thẳng AM và EF, L là giao điểm của hai đường thẳng AN và BC. Chứng minh KL vuông góc với BC. Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn (O), đường phân giác trong AD (D thuộc BC) cắt đường tròn (O) tại E (E khác A). Hạ BH vuông góc với AE tại H, đường thẳng BH cắt đường tròn (O) tại F (F khác B). Đường thẳng EF cắt hai đuờng thẳng AC, BC lần lượt tại K, M; hai đường thẳng OE và HK cắt nhau tại L. a) Chứng minh tứ giác AHKF nội tiếp trong đường tròn. b) Chứng minh HB.LE = HE.LK. c) Hai tiếp tuyến của đường tròn ngoại tiếp tam giác ADM tại A, M cắt nhau tại Q; tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại P. Chứng minh PQ song song với AD. Tìm tất cả các cặp số nguyên tố (p;q) thỏa mãn: p2 − 1 chia hết cho q và q2 – 4 chia hết cho p.
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Long An
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Long An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 cấp tỉnh Long An Đề học sinh giỏi Toán lớp 9 cấp tỉnh Long An Chào đón quý thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 9 năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Long An. Kỳ thi sẽ diễn ra vào ngày 16 tháng 04 năm 2023. Trích dẫn một số câu hỏi từ đề thi: + Cho điểm A nằm ngoài đường tròn (O;R). Từ A vẽ hai tiếp tuyến AM, AN đến đường tròn (O) (M, N là hai tiếp điểm). Trên nửa mặt phẳng bờ AO chứa điểm N, vẽ cát tuyến ABC không đi qua tâm O (B nằm giữa A và C). Gọi I là trung điểm của BC; NM cắt AC, AO lần lượt tại K và H. a) Chứng minh NIOM là tứ giác nội tiếp. b) Chứng minh AK.AI = AB.AC. c) AO cắt (O) tại hai điểm P, Q (AP < AQ). Gọi D là trung điểm của HQ. Đường thẳng qua H vuông góc với MD tại S và cắt MP tại E. Chứng minh P là trung điểm của ME. + Cho đường tròn (O;R), hai đường kính AB và CD vuông góc với nhau. E là điểm trên cung nhỏ BC (E khác B và C). Gọi M là giao điểm của AB và ED, N là giao điểm của CD và EA. Chứng minh AM + DN >= 22R. + Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: (x + y + 1)(xy + x + y) = 9 + 4(x + y).