Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tích phân có đáp án và lời giải

Tài liệu gồm 163 trang tuyển chọn và phân dạng các bài tập trắc nghiệm tích phân có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm tích phân có đáp án và lời giải: Vấn đề 1 . Tích phân. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 1). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 9). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 14). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 15). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 18). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 20). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 35). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 48). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 50). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 58). Vấn đề 2 . Tích phân đổi biến số. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 62). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 76). [ads] Phần 2 . Lời giải chi tiết. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 79). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 123). Vấn đề 3 . Tích phân từng phần. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tích phân P(x).e^x (Trang 131). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 133). + Dạng toán 3. Tích phân P(x).lnx (Trang 134). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tích phân P(x).e^x (Trang 138). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 148). + Dạng toán 3. Tích phân P(x).lnx (Trang 151).

Nguồn: toanmath.com

Đọc Sách

250 bài tập trắc nghiệm số phức chọn lọc - Nguyễn Văn Rin
Tài liệu gồm 27 trang với các bài toán trắc nghiệm số phức chọn lọc từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và cơ sở GD – ĐT trên toàn quốc. Trích dẫn tài liệu : + (ĐỀ MINH HỌA – 2017) Cho số phức z = 3 – 2i . Tìm phần thực và phần ảo của số phức z‾. A. Phần thực bằng -3 và phần ảo bằng -2i B. Phần thực bằng -3 và phần ảo bằng -2 C. Phần thực bằng 3 và phần ảo bằng 2i D. Phần thực bằng 3 và phần ảo bằng 2 [ads] + (ĐỀ THỬ NGHIỆM – 2017) Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z. A. Phần thực là -4 và phần ảo là 3 B. Phần thực là 3 và phần ảo là -4i C. Phần thực là 3 và phần ảo là -4 D. Phần thực là -4 và phần ảo là 3i + Trong các khẳng định sau, khẳng định nào sai? A. Tập hợp các điểm biểu diễn các số phức có môđun bằng 1 là đường tròn đơn vị (đường tròn có bán kính bằng 1, tâm là gốc tọa độ) B. Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện |z| ≤ 1 là phần mặt phẳng phía trong (kể cả biên) của đường tròn đơn vị C. Tập hợp các điểm biểu diễn các số phức có phần thực bằng 3 là một đường thẳng song song với trục hoành D. Tập hợp các điểm biểu diễn các số phức có phần thực và phần ảo thuộc khoảng (-1; 1) là miền trong của một hình vuông
160 bài tập trắc nghiệm số phức - Trần Đình Thiên
Tài liệu gồm 17  trang với phần tóm tắt lý thuyết, công thức tính và 160 bài tập trắc nghiệm số phức, tài liệu được biên soạn bởi tác giả Trần Đình Thiên nhằm bổ sung thêm các bài toán trắc nghiệm số phức chất lượng để các em luyện tập thêm trong quá trình học nội dung Giải tích 12 chương 4. Trích dẫn tài liệu 160 bài tập trắc nghiệm số phức – Trần Đình Thiên : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số ảo là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Hai đường thẳng y = ±x (trừ gốc toạ độ O). D. Đường tròn x^2 + y^2 = 1.
Tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao - Nguyễn Bảo Vương
Tài liệu gồm 95 trang tuyển chọn 416 bài tập trắc nghiệm số phức cơ bản và 235 bài tập trắc nghiệm số phức nâng cao có đáp án, tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương nhằm cung cấp thêm ngân hàng đề thi trắc nghiệm số phức cho giáo viên trong quá trình giảng dạy và giúp học sinh có thêm nguồn đề số phức tham khảo, rèn luyện trong quá trình học chương trình Giải tích 12 chương 4. PHẦN 1 : 416 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC CƠ BẢN Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Các phép tính về số phức: Sử dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. Số phức và thuộc tính của nó: + Tìm phần thực và phần ảo z = a + bi, suy ra phần thực a, phần ảo b. + Biểu diễn hình học của số phức. Dạng toán 2. Biểu diễn hình học của số phức và ứng dụng. Dạng toán 3. Căn bậc hai của số phức và phương trình bậc hai. Định nghĩa về căn bậc hai của số phức và những điểm cần lưu ý. Hướng dẫn phương pháp tìm căn bậc hai của số phức. Phương trình bậc hai với hệ số phức và phương pháp giải, định lý Vi-et. PHẦN 2 : 235 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC NÂNG CAO – CỰC CAO Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Dạng toán 2. Dạng lượng giác của số phức. Công thức De – Moivre: Có thể nói công thức De – Moivre là một trong những công thức thú vị và là nền tảng cho một loạt công thức quan trọng khác sau này như phép luỹ thừa, khai căn số phức, công thức Euler. Dạng toán 3. Cực trị của số phức. [ads] Trích dẫn tài liệu tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao – Nguyễn Bảo Vương : + Trên tập số phức, cho phương trình sau: (z + i)^4 + 4z^2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau? 1. Phương trình vô nghiệm trên trường số thực. 2. Phương trình vô nghiệm trên trường số phức. 3. Phương trình không có nghiệm thuộc tập số thực. 4. Phương trình có bốn nghiệm thuộc tập số phức. 5. Phương trình chỉ có hai nghiệm là số phức. 6. Phương trình có hai nghiệm là số thực. + Cho số phức z thỏa |z – 1 + i| = 2. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 2. D. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 4. + Cho số phức z thỏa |z + 2| = |1 – z|. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn. D. Tập hợp điểm biểu diễn số phức z là một đường Elip.
Bài tập trắc nghiệm chuyên đề số phức - Đặng Việt Đông
Tài liệu gồm 36 trang được biên soạn bởi thầy Đặng Việt Đông bao gồm phần tóm tắt lý thuyết, công thức tính toán thường dùng và tuyển chọn các bài tập trắc nghiệm chuyên đề số phức thuộc chương trình Giải tích 12 chương 4. Các bài tập số phức trong tài liệu được phân loại dựa theo các dạng toán: + Số phức và các phép tính trên số phức. + Số phức và các tính chất. + Tìm số phức thỏa mãn điều kiện bài toán. + Số phức có môđun nhỏ nhất, lớn nhất (bài toán min – max số phức). + Phương trình, hệ phương trình trên tập số phức. + Biểu diễn hình học của số phức, tìm tập hợp điểm. [ads] Trích dẫn tài liệu bài tập trắc nghiệm chuyên đề số phức – Đặng Việt Đông : + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số thực âm là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Đường thẳng y = x (trừ gốc toạ độ O). D. Đường thẳng y = – x (trừ gốc toạ độ O). + Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa |z + 3 – 2i| là: A. Đường tròn tâm I(-3; 2), bán kính R = 4. B. Đường tròn tâm I(3; -2), bán kính R = 16. C. Đường tròn tâm I(3; -2), bán kính R = 4. D. Đường tròn tâm I(-3; 2), bán kính R = 16. + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = – 2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. B. Hai điểm A và B đối xứng với nhau qua trục hoành. C. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O. D. Hai điểm A và B đối xứng với nhau qua trục tung.