Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp lý thuyết tọa độ không gian Oxyz - Lê Minh Tâm

Tài liệu gồm 226 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Hình học chương 3. Chủ đề 01 . TỌA ĐỘ. A. Lý thuyết chung. 1. Véctơ 4. 2. Điểm 5. 3. Hình chiếu vuông góc 8. 4. Đối xứng 8. 5. Góc 9. 6. Khoảng cách 9. B. Các dạng bài tập. + Dạng 1.1. Tìm tọa độ điểm thỏa điều kiện cho trước 10. + Dạng 1.2. Tìm tọa độ điểm đặc biệt 12. + Dạng 1.3. Tìm tọa độ vectơ thỏa điều kiện cho trước 17. + Dạng 1.4. Liên quan độ dài 18. + Dạng 1.5. Sự cùng phương 20. + Dạng 1.6. Sự đồng phẳng 21. + Dạng 1.7. Ứng dụng tích có hướng 23. + Dạng 1.8. Liên quan góc 26. + Dạng 1.9. Tâm tỷ cự 28. + Dạng 1.10. Tọa độ hóa 30. + Cách chọn hệ tọa độ một số hình không gian 31. Chủ đề 02 . PHƯƠNG TRÌNH MẶT CẦU. A. Lý thuyết chung. 1. Phương trình 37. 2. Vị trí tương đối 37. B. Các dạng bài tập. + Dạng 2.1. Xác định tâm – bán kính – nhận biết phương trình mặt cầu 39. + Dạng 2.2. Phương trình mặt cầu có tâm và đi qua một điểm 41. + Dạng 2.3. Phương trình mặt cầu nhận hai điểm làm đường kính 42. + Dạng 2.4. Phương trình mặt cầu qua 4 điểm không đồng phẳng 43. + Dạng 2.5. Phương trình mặt cầu tâm I thuộc (P) và qua ba điểm 44. + Dạng 2.6. Phương trình mặt cầu tâm I thuộc d và qua hai điểm 45. + Dạng 2.7. Phương trình mặt cầu tiếp xúc mặt phẳng – đường thẳng 46. + Dạng 2.8. Phương trình mặt cầu cắt mặt phẳng – đường thẳng 48. Chủ đề 03 . PHƯƠNG TRÌNH MẶT PHẲNG. A. Lý thuyết chung. 1. Phương trình 50. 2. Vị trí tương đối hai mặt phẳng 50. B. Các dạng bài tập. + Dạng 3.1. Xác định vectơ pháp tuyến 51. + Dạng 3.2. Phương trình mặt phẳng đi qua ba điểm đồng phẳng 52. + Dạng 3.3. Phương trình mặt phẳng đi qua hai điểm và chứa vectơ 54. + Dạng 3.4. Phương trình mặt phẳng trung trực của đoạn thẳng 55. + Dạng 3.5. Phương trình mặt phẳng qua 2 điểm, vuông góc mặt phẳng 56. + Dạng 3.6. Phương trình mặt phẳng qua điểm, vuông góc 2 mặt phẳng 57. + Dạng 3.7. Phương trình mặt phẳng song song mặt phẳng khác 58. + Dạng 3.8. Phương trình mặt phẳng qua điểm, song song/vuông góc đường thẳng 60. + Dạng 3.9. Phương trình mặt phẳng qua điểm, chứa đường thẳng 61. + Dạng 3.10. Phương trình mặt phẳng chứa d, d’ và d cắt d’ 62. + Dạng 3.11. Phương trình mặt phẳng chứa d, d’ và d song song d’ 63. + Dạng 3.12. Phương trình mặt phẳng chứa d và song song d’ 64. + Dạng 3.13. Phương trình mặt phẳng chứa d và vuông góc mặt khác 65. + Dạng 3.14. Phương trình mặt phẳng cách đều 2 đường thẳng 66. + Dạng 3.15. Phương trình mặt phẳng liên quan mặt cầu 67. Chủ đề 04 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. A. Lý thuyết chung. 1. Phương trình 69. 2. Vị trí tương đối hai đường thẳng 69. 3. Vị trí tương đối giữa đường thẳng và mặt phẳng 70. 4. Vị trí tương đối giữa đường thẳng và mặt cầu 70. 5. Khoảng cách liên quan đến đường thẳng 70. B. Các dạng bài tập. + Dạng 4.1. Xác định vectơ chỉ phương 71. + Dạng 4.2. Phương trình đường thẳng qua điểm & có sẵn VTCP 72. + Dạng 4.3. Phương trình đường thẳng qua hai điểm 73. + Dạng 4.4. Phương trình đường thẳng là giao tuyến hai mặt phẳng 74. + Dạng 4.5. Phương trình đường thẳng qua điểm, song song d 76. + Dạng 4.6. Phương trình đường thẳng qua điểm, vuông góc mặt 77. + Dạng 4.7. Phương trình đường thẳng qua điểm, vuông góc d, d’ 78. + Dạng 4.8. Phương trình đường thẳng qua điểm, song song vuông góc d 79. + Dạng 4.9. Phương trình đường thẳng qua điểm, vuông góc d, cắt d’ 80. + Dạng 4.10. Phương trình đường thẳng qua điểm, vuông góc & cắt d 82. + Dạng 4.11. Phương trình đường thẳng qua điểm, song song & cắt d 83. + Dạng 4.12. Phương trình đường thẳng qua điểm & cắt d1, d2 84. + Dạng 4.13. Phương trình đường thẳng nằm trong & cắt d1 d2 86. + Dạng 4.14. Phương trình đường thẳng nằm trong & vuông góc d 87. + Dạng 4.15. Phương trình đường thẳng qua điểm và // d’ cắt d1, d2 89. + Dạng 4.16. Phương trình đường thẳng là đường vuông góc chung 90. + Dạng 4.17. Phương trình đường thẳng là đường phân giác 91. + Dạng 4.18. Liên quan hình chiếu 92. + Dạng 4.19. Liên quan đối xứng 95. Chủ đề 05 . VỊ TRÍ TƯƠNG ĐỐI. A. Lý thuyết chung. 1. Điểm và mặt cầu, mặt phẳng và đường thẳng 97. 2. Mặt cầu và mặt phẳng, đường thẳng 98. 3. Mặt phẳng và mặt phẳng, đường thẳng 98. 4. Đường thẳng và đường thẳng 99. B. Các dạng bài tập. + Dạng 5.1. Vị trí tương đối với mặt cầu 100. + Dạng 5.2. Vị trí tương đối với mặt phẳng 102. + Dạng 5.3. Vị trí tương đối với đường thẳng 104. + Dạng 5.4. Góc 107. + Dạng 5.5. Khoảng cách 109.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình học tọa độ Oxyz - Đặng Việt Đông
giới thiệu đến các em học sinh khối 12 tài liệu chuyên đề hình học tọa độ Oxyz (phiên bản đặc biệt), tài liệu gồm 901 trang trình bày đầy đủ lý thuyết, dạng toán và bài tập trắc nghiệm chủ đề phương pháp tọa độ trong không gian (Hình học 12 chương 3), tài liệu được biên soạn bởi thầy Đặng Việt Đông. CHỦ ĐỀ 1. HỆ TRỤC TỌA ĐỘ Dạng 1: Tìm tọa độ điểm, tọa độ vec tơ thỏa điều kiện cho trước. Dạng 2: Tính độ dài đoạn thẳng. Dạng 3: Xét sự cùng phương, sự đồng phẳng. Dạng 4: Bài toán về tích vô hướng, góc và ứng dụng. Dạng 5: Bài toán về tích có hướng và ứng dụng. CHỦ ĐỀ 2. PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Tìm tâm và bán kính, điều kiện xác định mặt cầu. Dạng 2: Phương trình mặt cầu biết tâm, dễ tính bán kính (chưa học phương trình mặt phẳng). Dạng 3: Phương trình mặt cầu biết 2 đầu mút của đường kính. Dạng 4: Phương trình mặt cầu ngoại tiếp tứ diện. Dạng 5: Phương trình mặt cầu qua nhiều điểm, thỏa điều kiện. Dạng 6: Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. Dạng 7: Phương trình mặt cầu biết tâm và đường tròn trên nó. Dạng 8: Phương trình mặt cầu biết tâm và điều kiện của dây cung. Dạng 9: Phương trình mặt cầu biết tâm thuộc d, thỏa điều kiện. Dạng 10: Phương trình mặt cầu biết tâm thuộc mặt phẳng, thỏa điều kiện. Dạng 11: Phương trình mặt cầu biết tâm, thỏa điều kiện khác. Dạng 12: Phương trình mặt cầu thỏa mãn điều kiện đối xứng. Dạng 13: Toán max – min liên quan đến mặt cầu. Dạng 14: Điểm thuộc mặt cầu thỏa điều kiện. [ads] CHỦ ĐỀ 3. PHƯƠNG TRÌNH MẶT PHẲNG (CHƯA HỌC PHƯƠNG TRÌNH ĐƯỜNG THẲNG) Dạng 1: Tìm vectơ pháp tuyến, các vấn đề về lý thuyết. Dạng 2: Phương trình mặt phẳng trung trực của đoạn thẳng. Dạng 3: Phương trình mặt phẳng qua 1 điểm, dễ tìm vectơ pháp tuyến (không dùng tích có hướng). Dạng 4: Phương trình mặt phẳng qua 1 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 5: Phương trình mặt phẳng qua 1 điểm, tiếp xúc với mặt cầu. Dạng 6: Phương trình mặt phẳng qua 1 điểm, cắt mặt cầu. Dạng 7: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 8: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện khác. Dạng 9: Phương trình mặt phẳng qua 2 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 10: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 11: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện khác. Dạng 12: Phương trình mặt phẳng qua 3 điểm không thẳng hàng. Dạng 13: Phương trình mặt phẳng theo đoạn chắn. Dạng 14: Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MẶT PHẲNG (CÓ SỬ DỤNG PHƯƠNG TRÌNH ĐƯỜNG THẲNG) Dạng 1: Tìm vectơ pháp tuyến, các vấn đề về lý thuyết. Dạng 2: Phương trình mặt phẳng qua 1 điểm, dễ tìm vectơ pháp tuyến (không dùng tích có hướng). Dạng 3: Phương trình mặt phẳng qua 1 điểm, vectơ pháp tuyến tìm bằng tích có hướng (đường – mặt). Dạng 4: Phương trình mặt phẳng qua 1 điểm và chứa đường thẳng. Dạng 5: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện khác. Dạng 6: Phương trình mặt phẳng qua 2 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 7: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 8: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với đường thẳng khác. Dạng 9: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với mặt phẳng. Dạng 10: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện về góc, khoảng cách. Dạng 11: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với mặt cầu. Dạng 12: Phương trình mặt phẳng theo đoạn chắn thỏa điều kiện với đường thẳng. Dạng 13: Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. Dạng 14: Toán max – min liên quan đến mặp phẳng. Dạng 15: Điểm thuộc mặt phẳng thỏa điều kiện. CHỦ ĐỀ 5. PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Tìm vectơ chỉ phương, các vấn đề về lý thuyết. Dạng 2: Phương trình đường thẳng qua 1 điểm, dễ tìm vectơ chỉ phương (không dùng tích có hướng). Dạng 3: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho 2 mặt phẳng). Dạng 4: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho 2 đường thẳng). Dạng 5: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho đường thẳng + mặt phẳng). Dạng 6: Phương trình đường thẳng qua 1 điểm, cắt d1, có liên hệ với d2. Dạng 7: Phương trình đường thẳng qua 1 điểm, cắt d, có liên hệ với mặt phẳng (P). Dạng 8: Phương trình đường thẳng qua 1 điểm, cắt d1 lẫn d2. Dạng 9: Phương trình đường thẳng qua 1 điểm, vừa cắt – vừa vuông góc với d. Dạng 10: Phương trình đường thẳng qua 1 điểm, vuông góc với d, thỏa điều kiện khoảng cách. Dạng 11: Phương trình đường thẳng qua 1 điểm, thỏa điều kiện khác. Dạng 12: Phương trình đường thẳng cắt 2 đường thẳng d1, d2, thỏa điều kiện khác. Dạng 13: Phương trình đường thẳng nằm trong (P), vừa cắt vừa vuông góc với d. Dạng 14: Phương trình đường thẳng thỏa điều kiện đối xứng. Dạng 15: Phương trình giao tuyến của 2 mặt phẳng. Dạng 16: Phương trình đường vuông góc chung của hai đường thẳng chéo nhau. Dạng 17: Phương trình hình chiếu vuông góc của d lên (P). Dạng 18: Toán max – min liên quan đến đường thẳng. Dạng 19: Điểm thuộc đường thẳng thỏa điều kiện. CHỦ ĐỀ 6. TOÁN TỔNG HỢP VỀ ĐƯỜNG THẲNG – MẶT PHẲNG – MẶT CẦU Dạng 1: Xét vị trí tương đối giữa 2 mặt phẳng. Dạng 2: Xét vị trí tương đối giữa 2 đường thẳng. Dạng 3: Xét vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 4: Xét vị trí tương đối giữa mặt phẳng và mặt cầu. Dạng 5: Xét vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 6: Góc giữa hai mặt phẳng. Dạng 7: Góc giữa hai đường thẳng. Dạng 8: Góc giữa đường thẳng và mặt phẳng. Dạng 9: Khoảng cách từ 1 điểm đến 1 mặt phẳng. Dạng 10: Khoảng cách từ 1 điểm đến 1 đường thẳng. Dạng 11: Khoảng cách giữa hai đối tượng song song. Dạng 12: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 13: Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 14: Tìm giao điểm của hai đường thẳng cắt nhau. Dạng 15: Tìm giao điểm của đường thẳng và mặt cầu. Dạng 16: Hình chiếu vuông góc của điểm lên đường, mặt (và ứng dụng). Dạng 17: Tìm điểm thỏa điều kiện đối xứng. CHỦ ĐỀ 7. MIN – MAX VÀ TOÁN THỰC TẾ Dạng 1: Toán max – min tổng hợp. Dạng 2: Toán thực tế.
Chuyên đề phương pháp tọa độ trong không gian - Lư Sĩ Pháp
Tài liệu gồm 156 trang phân dạng và hướng dẫn giải các dạng toán thuộc các chủ đề: hệ trục tọa độ Oxyz, phương trình mặt phẳng, phương trình đường thẳng trong không gian … thuộc chương trình Hình học 12 chương 3 – phương pháp tọa độ trong không gian, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. §1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN Vấn đề 1 . Tìm tọa độ của một vectơ và các yếu tố liên quan đến vectơ thỏa mãn một số điều kiện cho trước. Sử dụng định nghĩa và khái niệm có liên quan đến vectơ: Tọa độ các vectơ; độ dài của vectơ; tổng hiệu của hai vectơ; tính các tọa độ trung điểm của đoạn thẳng; trọng tâm của tam giác. Vấn đề 2 . Tích vô hướng và các ứng dụng của tích vô hướng. Sử dụng định nghĩa tích vô hướng và biểu thức tọa độ của tích vô hướng. Sử dụng các công thức tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ. Vấn đề 3 . Lập phương trình mặt cầu – xác định tâm và bán kính mặt cầu có phương trình cho trước. Để viết phương trình mặt cầu (S), ta cần xác định tâm và bán kính mặt cầu. [ads] §2. PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1 . Tích có hướng của hai vectơ và các ứng dụng. Sử dụng định nghĩa của tích có hướng của hai vectơ và các tính chất của tích có hướng. Sử dụng các công thức tính diện tích, thể tích. Vấn đề 2 . Viết phương trình tổng quát của mặt phẳng. Loại 1. Viết phương trình mặt phẳng (α) khi biết vectơ pháp tuyến n và một điểm M0 thuộc (α). Loại 2. Viết phương trình mặt phẳng (α) chứa ba điểm A, B, C không thẳng hàng (hay đi qua ba điểm A, B, C). Loại 3. Viết phương trình mặt phẳng (α) chứa điểm M0 và song song với mặt phẳng (β). Loại 4. Viết phương trình mặt phẳng (α) chứa hai điểm M, N và vuông góc với mặt phẳng (β). Vấn đề 3 . Vị trí tương đối của hai mặt phẳng. Vấn đề 4 . Khoảng cách và góc. Khoảng cách từ một điểm đến một mặt phẳng. Góc giữa hai mặt phẳng. Vấn đề 5 . Bài toán liên hệ giữa mặt phẳng và mặt cầu. Viết phương trình mặt cầu, xác định tâm và bán kính của mặt cầu (S). Viết phương trình tiếp diện của mặt cầu. Mặt phẳng (α) tiếp xúc với mặt cầu (S) có tâm I bán kính r ⇔ d(I;(α)) = r. §3. PHƯƠNG TRÌNH ĐƯỜNG THẲNGTRONG KHÔNG GIAN Vấn đề 1 . Viết phương trình tham số và phương trình chính tắc của đường thẳng ∆. Vấn đề 2 . Vị trí tương đối giữa hai đường thẳng trong không gian. Vấn đề 3 . Xét vị trí tương đối giữa đường thẳng và mặt phẳng. Vấn đề 4 . Tính khoảng cách.
256 bài toán trắc nghiệm chuyên đề Oxyz có lời giải chi tiết - Tiêu Phước Thừa
Tài liệu gồm 114 trang được tổng hợp và biên soạn bởi thầy Tiêu Phước Thừa tuyển tập 256 bài toán trắc nghiệm chuyên đề Oxyz có lời giải chi tiết thuộc chương trình Hình học 12 chương 3. Trích dẫn tài liệu 256 bài toán trắc nghiệm chuyên đề Oxyz có lời giải chi tiết – Tiêu Phước Thừa : + Cho hai mặt phẳng có phương trình: 2x – my + 3z – 6 = 0 và mx – 2y + (m + 1)z – 10 = 0. Với m = 2 thì hai mặt phẳng này? A. song song với nhau. B. trùng nhau. C. cắt nhau nhưng không vuông góc. D. vuông góc với nhau. [ads] + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x – y + 2z – 6 = 0 và mặt cầu: (S): x^2 + y^2 + z^2 – 2x – 2y – 7 = 0, biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C). Tính bán kính r của đường tròn (C)? + Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x – y + 3 = 0 và A(0;0;3), B(1;0;2), C(-7;0;-1). Mặt phẳng (Q) qua A và vuông góc mp (P) và cắt BC tại điểm I sao cho I là trung điểm BC có phương trình là?
Chuyên đề phương pháp tọa độ trong không gian - Bùi Trần Duy Tuấn
giới thiệu đến bạn đọc tài liệu Chuyên đề phương pháp tọa độ trong không gian do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 280 trang hệ thống đầy đủ kiến thức, phân dạng toán, ví dụ minh họa và các bài tập trắc nghiệm có lời giải chi tiết chuyên đề phương pháp tọa độ trong không gian Oxy. CHỦ ĐỀ 1: HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN 1. Tìm tọa độ của vectơ, của điểm 2. Tích vô hướng của hai vectơ và ứng dụng 3. Vận dụng công thức trung điểm và trọng tâm 4. Chứng minh hai vectơ cùng phương, không cùng phương 5. Tích có hướng của hai vectơ và ứng dụng CHỦ ĐỀ 2: PHƯƠNG TRÌNH MẶT CẦU 1. Tìm tâm và bán kính mặt cầu 2. Viết phương trình mặt cầu 3. Sự tương giao và sự tiếp xúc [ads] CHỦ ĐỀ 3: PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó Dạng 2: Viết phương trình mặt phẳng (α) đi qua 1 điểm M(x0; y0; z0) và song song với 1 mặt phẳng (β): Ax + By + Cz + D = 0 cho trước Dạng 3: Viết phương trình mặt phẳng (α) đi qua 3 điểm A , B, C không thẳng hàng Dạng 4: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng Δ Dạng 5: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β) Dạng 6: Viết phương trình mặt phẳng (α) qua hai điểm A  B và vuông góc với mặt phẳng (β) Dạng 7: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ, Δ’ chéo nhau) Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và 1 điểm M Dạng 9: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng cắt nhau Δ và Δ’ Dạng 10: Viết phương trình mặt phẳng (α) chứa 2 song song Δ và Δ’ Dạng 11:Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng Δ và Δ’ chéo nhau cho trước Dạng 12:Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P), (Q) cho trước Dạng 13: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) Ax + By + Cz + D = 0 một khoảng k cho trước Dạng 14: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β): Ax + By + Cz + D = 0 cho trước và cách điểm M một khoảng k cho trước Dạng 15: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S) Dạng 16: Viết phương trình mặt phẳng (α) chứa một đường thẳng Δ và tạo với một mặt phẳng (β): Ax + By + Cz + D = 0 cho trước một góc φ cho trước CHỦ ĐỀ 4: PHƯƠNG TRÌNH ĐƯỜNG THẲNG 1. Xác định vectơ chỉ phương của đường thẳng 2. Lập phương trình đường thẳng 3. Xét vị trí tương đối của hai đường thẳng 4. Vị trí tương đối của đường thẳng và mặt phẳng 5. Hình chiếu của một điểm lên một đường thẳng 6. Hình chiếu của một điểm lên một mặt phẳng 7. Khoảng cách từ điểm đến đường thẳng – khoảng cách giữa hai đường thẳng chéo nhau 8. Góc giữa hai đường thẳng – góc giữa đường thẳng và mặt phẳng 9. Xác định tọa độ điểm trên đường thẳng CHỦ ĐỀ 5: THỦ THUẬT CASIO GIẢI NHANH CHUYÊN ĐỀ OXYZ 1. Tính nhanh thể tích chóp, diện tích tam giác 2. Tính nhanh vị trí tương đối giữa đường – mặt 3. Tìm hình chiếu vuông góc trong không gian 4. Tính nhanh khoảng cách trong không gian 5. Tính nhanh góc giữa vectơ, đường và mặt CHỦ ĐỀ 6: BÀI TẬP VẬN DỤNG CAO OXYZ