Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2023 - 2024 trường THPT Kiến Thụy - Hải Phòng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán 12 năm học 2023 – 2024 trường THPT Kiến Thụy, thành phố Hải Phòng; đề thi có đáp án và lời giải chi tiết mã đề 466 469 472 475 478 481 484 487. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2023 – 2024 trường THPT Kiến Thụy – Hải Phòng : + Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông SAB có diện tích bằng 2 4a. Góc giữa trục SO và mặt phẳng SAB bằng 30°. Diện tích xung quanh của hình nón đã cho bằng? + Cho hàm số bậc bốn y fx có đồ thị hàm số y fx như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2023] để hàm số 4 2 gx f x m 2 có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là? + Cho các hàm số log a b y xy x có đồ thị như hình vẽ bên. Đường thẳng x = 7 cắt trục hoành, đồ thị hàm số log a b y xy x lần lượt tại HMN. Biết rằng HM MN. Mệnh đề nào sau đây đúng?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng Toán 12 lần 2 năm 2020 trường Lương Thế Vinh - Hà Nội
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán do Bộ GD&ĐT tổ chức, ngày … tháng 06 năm 2020, trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán 12 năm học 2019 – 2020 lần thi thứ hai. Đề kiểm tra chất lượng Toán 12 lần 2 năm 2020 trường Lương Thế Vinh – Hà Nội gồm 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề kiểm tra chất lượng Toán 12 lần 2 năm 2020 trường Lương Thế Vinh – Hà Nội : + Một em bé có một bộ 6 thẻ chữ, trên mỗi thẻ có ghi một chữ cái, trong đó có 3 thẻ chữ T, một thẻ chữ N, một thẻ chữ H và một thẻ chữ P. Em bé đó xếp ngẫu nhiên 6 thẻ đó thành một hàng ngang. Tính xác suất em bé xếp được thành dãy TNTHPT. [ads] + Cho hàm số y = (2x – m^2)/(x + 1) có đồ thị (Cm), trong đó m là tham số thực. Đường thẳng d: y = m – x cắt (Cm) tại hai điểm A(xA;yA) và B(xB;yB) với xA < xB; đường thẳng d’: y = 2 – m – x cắt (Cm) tại hai điểm C(xC;yC) và D(xD;yD) với xC < xD. Gọi S là tập hợp tất cả các giá trị của tham số m để xA.xD = -3. Số phần tử của tập S là? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 12a; khoảng cách từ S tới mặt phẳng (ABCD) bằng 4a. Gọi L là trọng tâm tam giác ACD; gọi T và V lần lượt là trung điểm các cạnh SB và SC. Mặt phẳng (LTV) chia hình chóp S.ABCD thành hai khối đa diện, hãy tính thể tích của khối đa diện chứa đỉnh S.
Đề khảo sát chất lượng Toán 12 năm 2019 - 2020 sở GDĐT Vĩnh Phúc
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán 12 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 năm 2019 – 2020 sở GD&ĐT Vĩnh Phúc mã đề 316 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (H). Hãy chọn khẳng định đúng (tham khảo hình vẽ). A. (H) là một tam giác. B. (H) là một hình bình hành. C. (H) là một hình thang (không phải là hình bình hành). D. (H) là một ngũ giác. [ads] + Gọi S là tập hợp các số tự nhiên có sáu chữ số trong đó có đúng ba chữ số 1, ba chữ số còn lại khác nhau và khác 0. Lấy ngẫu nhiên một số thuộc tập S. Xác suất để lấy được số mà trong đó không có hai chữ số 1 nào đứng cạnh nhau là? + Cho hình nón (H) có đỉnh S và đáy là hình tròn tâm O bán kính R, chiều cao 2R. Một mặt phẳng đi qua đỉnh và cắt đường tròn đáy theo dây cung AB có độ dài bằng bán kính đáy. Tính sin của góc tạo bởi OA và mặt phẳng (SAB).
Đề khảo sát chất lượng Toán 12 năm 2020 trường THPT Nguyễn Đức Cảnh - Thái Bình
Nhằm giúp học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT năm học 2019 – 2020, ngày … tháng 06 năm 2020, trường THPT Nguyễn Đức Cảnh, tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng lớp 12 môn thi Toán. Đề khảo sát chất lượng Toán 12 năm 2020 trường THPT Nguyễn Đức Cảnh – Thái Bình mã đề 001 gồm 04 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2020 trường THPT Nguyễn Đức Cảnh – Thái Bình : + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1m và 1,5m. Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? [ads] + Cho hình chóp S.ABC có đáy là ∆ABC vuông tại B, AB = BC = 2a, (SAB) ⊥ (ABC) và (SAC) ⊥ (ABC). Gọi M là trung điểm đoạn AB, mặt phẳng (α) qua SM và (α) // BC cắt AC tại N, góc giữa hai mặt phẳng (SBC) và (ABC) = 60 độ.Tính theo a khoảng cách giữa hai đường thẳng AB và SN. + Cho hình trụ có bán kính đáy và trục OO’ cùng có độ dài bằng 1. Một mặt phẳng (P) thay đổi đi qua O, tạo với đáy của hình trụ một góc 60 độ và cắt hai đáy của hình trụ đã cho theo hai dây cung AB và CD (AB qua O). Tính diện tích của tứ giác ABCD.
Đề khảo sát Toán 12 lần 03 năm 2020 trường chuyên Hùng Vương - Phú Thọ
Ngày 05 tháng 06 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Phú Thọ tổ chức kỳ thi khảo sát chất lượng lớp 12 môn Toán lần 03 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 03 năm 2020 trường chuyên Hùng Vương – Phú Thọ mã đề 214 gồm 05 trang với 50 câu trắc nghiệm, học sinh có 90 phút để hoàn thành bài thi, kỳ thi nằm trong kế hoạch ôn tập hướng đến kỳ thi tốt nghiệp THPT năm 2020 môn Toán. Trích dẫn đề khảo sát Toán 12 lần 03 năm 2020 trường chuyên Hùng Vương – Phú Thọ : + Trong hình vẽ bên các đường cong (C1): y = a^x, (C2): y = b^x, (C3): y = c^x và đường thẳng y = 4, y = 8 tạo thành hình vuông MNPQ có cạnh bằng 4. Biết rằng abc = 2^x/y với x, y thuộc Z+ và x/y tối giản, giá trị của x + y bằng? [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, AB = a√2. Gọi I là trung điểm của BC, hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABC) là điểm H thỏa mãn IC = -2IH, góc giữa SC và mặt phẳng (ABC) bằng 60°. Thể tích khối chóp S.ABC bằng? + Cho hàm số y = x^6 + (4 + m)x^5 + (16 – m^2)x^4 + 2. Gọi S là tập hợp các giá trị m nguyên dương để hàm số đã cho đạt cực tiểu tại x = 0. Tổng các phần tử của S bằng?