Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 1 năm 2019 - 2020 trường Triệu Sơn 4 - Thanh Hóa

Ngày … tháng … năm 2019, trường THPT Triệu Sơn 4, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020 lần thứ nhất, kỳ thi nằm trong kế hoạch kiểm tra đánh giá chất lượng thường xuyên đối với học sinh khối 12, để hướng đến kỳ thi THPT Quốc gia năm 2020. Đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Triệu Sơn 4 – Thanh Hóa mã đề 121 gồm có 50 câu trắc nghiệm, đề có 06 trang, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Triệu Sơn 4 – Thanh Hóa : + Một cái hồ rộng có hình chữ nhật. Tại một góc nhỏ của hồ người ta đóng một cái cọc ở vị trí K cách bờ AB là 1m và cách bờ AC là 8m, rồi dùng một cây sào ngăn một góc nhỏ của hồ để thả bèo (như hình vẽ). Tính chiều dài ngắn nhất của cây sào để cây sào có thể chạm vào 2 bờ AB, AC và cây cọc K (bỏ qua đường kính của sào). [ads] + Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4.000.000 đồng vào một  ngày cố định của tháng ở ngân hàng M với lại suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Hỏi mệnh đề nào dưới đây là đúng? A. 3.500.000.000 < A < 3.550.000.000. B. 3.400.000.000 < A < 3.450.000.000. C. 3.350.000.000 < A < 3.400.000.000. D. 3.450.000.000 < A < 3.500.000.000. + Trên mặt phẳng Oxy ta xét một hình chữ nhật ABCD với các điểm A(-2;0), B(-2;2), C(4;2), D(4;0). Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên (tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm M(x;y) mà x + y < 2.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL THPT Quốc gia 2018 môn Toán trường THPT Phước Vĩnh - Bình Dương
Đề KSCL THPT Quốc gia 2018 môn Toán trường THPT Phước Vĩnh – Bình Dương mã đề 107 nằm trong chuyên mục đề thi thử Toán hướng đến kỳ thi THPTQG 2018, đề gồm 6 trang được biên soạn theo hình thức trắc nghiệm với 50 câu hỏi, thí sinh làm bài trong thời gian 90 phút, đề thi có đáp án đầy đủ các mã đề 980, 664, 635 và 107. Trích dẫn đề KSCL THPT Quốc gia 2018 môn Toán : + Một hình nón có bán kính đáy bằng 2 và chiều cao bằng 4. Một mặt phẳng (P) song song với đáy và cắt hình nón theo một đường tròn. Khối trụ (H) có một đáy là đường tròn giao của (P) và hình nón và đáy còn lại nằm trên đáy của hình nón, trục của hình trụ (H) cũng là trục của hình nón. Tính thể tích của khối trụ (H) trong trường hợp thể tích đó lớn nhất? [ads] + Một nhóm học có 25 học sinh. Giáo viên cần chọn ra một nhóm và chỉ định một em trong nhóm làm nhóm trưởng. Số học sinh trong nhóm phải lớn hơn 1 và nhỏ hơn 25. Hỏi có bao nhiêu cách lập nhóm thỏa mãn các yêu cầu trên. + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;6;2) và B(2;-2;0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó.
Đề KSCL Toán 12 năm 2018 trường THPT Hàm Rồng - Thanh Hóa
Đề KSCL Toán 12 năm 2018 trường THPT Hàm Rồng – Thanh Hóa 104 được biên soạn nhằm kiểm tra chất lượng các môn theo khối thi Đại học, kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2018, đề thi có đáp án và hướng dẫn giải các bài tập vận dụng cao. Trích dẫn đề KSCL Toán 12 năm 2018 : + Có 25 học sinh được chia thành 2 nhóm A và B, sao cho trong mỗi nhóm đều có nam và nữ. Chọn ngẫu nhiên từ mỗi nhóm một học sinh. Tính xác suất để hai học sinh được chọn có cả nam và nữ. Biết rằng xác suất chọn được hai học sinh nam là 0.57. [ads] + Trong không gian với hệ tọa độ Oxy, cho A (m;0;0), B(0;2m + 1;0), C(0;0;2m + 5) khác O, D là một điểm nằm khác phía với O so với mặt phẳng (ABC), sao cho tứ diện ABCD có các cặp cạnh đối diện bằng nhau. Tìm khoảng cách ngắn nhất từ O đến tâm I mặt cầu ngoại tiếp tứ diện ABCD. + Cho mặt phẳng (P): x – 2y + 2z – 3 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 10x + 6y – 10z + 39 = 0. Từ một điểm M thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại điểm N sao cho MN = 5. Biết rằng M thuộc một đường tròn cố định. Tính bán kính đường tròn đó.
Đề KSCL học sinh 12 năm 2018 môn Toán sở GD và ĐT Cần Thơ
Đề KSCL học sinh 12 năm 2018 môn Toán sở GD và ĐT Cần Thơ mã đề 301 nằm trong chuyên mục đề thi thử môn Toán, đề giúp các em làm quen với kỳ thi và thử sức mình để có sự chuẩn bị hướng đến kỳ thi THPT Quốc gia 2018 môn Toán, đề gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán 2018 sở Cần Thơ : + Người ta chế tạo ra một món đồ chơi cho trẻ em theo các công đoạn như sau: Trước tiên, chế tạo ra một hình nón tròn xoay với góc ở đỉnh là 2α = 60 độ bằng thủy tinh trong suốt. Sau đó đặt hai quả cầu nhỏ bằng thủy tinh có bán kính lớn, nhỏ khác nhau sao cho hai mặt cầu tiếp xúc với nhau và đều tiếp xúc với mặt nón, quả cầu lớn tiếp xúc với cả mặt đáy của hình nón (hình vẽ). Biết rằng chiều cao của hình nón bằng 9 cm. Bỏ qua bề dày của các lớp vỏ thủy tinh, tổng thể tích của hai khối cầu bằng? [ads] + Ông An muốn xây một bể nước dạng hình hộp chữ nhật có nắp với dung tích 3000 lít. Đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê công nhân để xây hồ là 500 000 đồng cho mỗi mét vuông. Hỏi chi phí thấp nhất ông An cần bỏ ra để xây bể nước là bao nhiêu? + Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trùng với gốc tọa độ O. Biết B(m;0;0), D(0;m;0), A'(0;0;n) với m, n là các số dương và m + n = 4. Gọi M là trung điểm cạnh CC’. Thể tích lớn nhất của khối tứ diện BDA’M bằng?
Đề KSCL Toán 12 năm học 2017 - 2018 sở GD và ĐT Hà Nam
Đề KSCL Toán 12 năm học 2017 – 2018 sở GD và ĐT Hà Nam mã đề 104 thuộc chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút để làm bài, kỳ thi được diễn ra vào ngày 07/05/2018, đề thi có đáp án . Trích dẫn đề KSCL Toán 12 năm học 2017 – 2018 : + Gọi S là tập hợp tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số y = |1/4.x^4 – 14x^2 + 48x + m – 30| trên đoạn [0;2] không vượt quá 30. Tổng giá trị các phần tử của tập hợp S bằng? [ads] + Xếp ngẫu nhiên 3 quả cầu màu đỏ khác nhau và 3 quả cầu màu xanh giống nhau vào một giá chứa đồ nằm ngang có 7 ô trống, mỗi quả cầu xếp được vào một ô. Xác suất để 3 quả cầu đỏ xếp cạnh nhau và 3 quả cầu màu xanh xếp cạnh nhau bằng? + Trong mặt phẳng cho 15 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có các đỉnh là3 trong số 15 điểm đã cho là?