Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán)

Nội dung Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Vào ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông cho năm học 2019 – 2020. Đây là kỳ thi dành cho các thí sinh mong muốn vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 của sở GD&ĐT Hà Nội (chuyên Toán – Vòng 2) bao gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán. Thời gian cho học sinh làm bài là 150 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán): + Trong tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Điểm I là tâm của đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn thẳng BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A). Chứng minh rằng MI^2 = MJ.MA. Kẻ đường kính MN của đường tròn (O). Đường thẳng MN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là trung điểm của đoạn thẳng PQ. Lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M ). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh bốn điểm P, Q, R, F cùng thuộc một đường tròn. + Trên mặt phẳng với mỗi điểm được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại hai điểm được tô bởi cùng một màu và có khoảng cách bằng d. Điều này sẽ dẫn đến việc tồn tại hai tam giác vuông và đồng dạng với nhau theo tỉ số k = 1/2019. Đề Toán tuyển sinh năm học 2019 – 2020 của sở GD&ĐT Hà Nội đã tạo cơ hội cho các học sinh thể hiện năng lực và kiến thức toán học của mình. Hãy cùng chúng tôi chờ đón kết quả của các thí sinh trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Tây Ninh
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh gồm có 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh : + Cho tam giác ABC có ABC = 30◦, ACB = 15◦ và M là trung điểm của BC. Lấy điểm D thuộc cạnh BC sao cho CD = AB. Tính số đo góc MAD. + Cho a, b, c là các số thực có tổng bằng 0 và −1 ≤ a, b, c ≤ 1. Tìm giá trị lớn nhất của biểu thức P = a2 + 2b2 + c2. + Cho tam giác ABC nhọn, không cân có O là tâm đường tròn ngoại tiếp và AH là đường cao với H thuộc BC. Gọi M là trung điểm cạnh BC và K là hình chiếu vuông góc của M trên cạnh AC. Đường tròn tâm I ngoại tiếp tam giác ABK cắt lại cạnh BC tại D. 1. Chứng minh CH.CM = CB.CD. 2. Gọi N là trung điểm của AB. Chứng minh I là trung điểm của ON.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Quảng Ngãi
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi : + Cho tam giác ABC vuông tại A, có đường cao AH. Tia phân giác của HAC cắt HC tại D. Gọi K là hình chiếu vuông góc của D trên AC. Tính AB, biết BC = 25 cm và DK = 6 cm. + Cho tam giác nhọn ABC có AB < AC, nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Đường thẳng AH cắt BC tại D và cắt đường tròn (O) tại điểm thứ hai là K. Gọi L là giao điểm của hai đường thẳng CH và AB, S là giao điểm của hai đường thẳng BH và AC. (a) Chứng minh tứ giác BCSL nội tiếp và BC là đường trung trực của đoạn thẳng HK. (b) Gọi M là trung điểm của BC, đường thẳng OM cắt các đường thẳng AB, AC lần lượt tại P, Q. Gọi N là trung điểm của PQ. Chứng minh hai đường thẳng HM và AN cắt nhau tại một điểm nằm trên đường tròn (O). + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021, đôi một nguyên tố cùng nhau. Chứng minh rằng trong 16 số trên có ít nhất một số là số nguyên tố.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Phú Yên
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho đường tròn (O; R), lấy điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ hai tiếp tuyến AM, AN (M, N là các tiếp điểm) và cát tuyến ABC (AB < AC). Gọi I là trung điểm của BC, T là giao điểm của NI với (O) ( T khác N). 1. Chứng minh rằng tam giác AMN đều. 2. Chứng minh rằng MT // AC. 3. Tiếp tuyến của (O) tại B, C cắt nhau ở K. Chứng minh rằng ba điểm K, M, N thẳng hàng. + Tìm cặp số (x; y) thỏa mãn phương trình x2 + y2 + 8x + y − 2xy + 3 = 0 sao cho y đạt giá trị lớn nhất. + Cho hình vuông ABCD . Gọi E, F lần lượt là trung điểm của CD, AD và G là giao điểm của AE và BF. 1. Chứng minh rằng FED = FGD. 2. Gọi H là điểm đối xứng với F qua G, I là giao điểm của BD và EF. Đường thẳng qua D, song song với BF cắt HI tại K. Chứng minh rằng K là trực tâm của tam giác G.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Ninh Bình
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho đường tròn (T) tâm O và dây cung AB cố định (O /∈ AB). P là điểm di dộng trên đoạn thẳng AB (P khác A, B và P khác trung điểm của đoạn thẳng AB). Đường tròn (T1) tâm C đi qua điểm P tiếp xúc với đường tròn (T) tại A. Đường tròn (T2) tâm D đi qua P tiếp xúc với đường tròn (T) tại B. Hai đường tròn (T1) và (T2) cắt nhau tại N (N khác P). Gọi (d1) là tiếp tuyến chung của (T) với (T1) tại A, (d2) là tiếp tuyến của (T) với (T2) tại B, (d1) cắt (d2) tại điểm Q. 1. Chứng minh tứ giác AOBQ nội tiếp đường tròn. 2. Chứng minh ANP = BNP và bốn điểm O, D, C, N cùng nằm trên một đường tròn. 3. Chứng minh rằng đường trung trực của đoạn ON luôn đi qua một cố định khi P di động trên đoạn thẳng AB (P khác A, B và P khác trung điểm của đoạn thẳng AB). + Tìm tất cả các số nguyên n sao cho n2 + 2022 là số chính phương. + Cho phương trình x2 − 2mx + 2m − 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 (x1 < x2) thỏa mãn 4×1 = x22.