Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2)

Tài liệu gồm 240 trang, phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2) có đáp án, giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 giai đoạn học kì 2. MỤC LỤC : Phần I GIẢI TÍCH. Bài 1. Nguyên hàm 6. + Dạng 1.1: Nguyên hàm cơ bản 6. Bảng đáp án 10. + Dạng 1.2: Nguyên hàm của hàm số hữu tỷ 10. Bảng đáp án 12. + Dạng 1.3: Nguyên hàm thỏa điều kiện cho trước 12. Bảng đáp án 14. + Dạng 1.4: Nguyên hàm của hàm số đạo hàm f′(x) 14. Bảng đáp án 16. + Dạng 1.5: Nguyên hàm của hàm số phân nhánh 17. Bảng đáp án 17. + Dạng 1.6: Phương pháp đổi biến số 18. Bảng đáp án 21. + Dạng 1.7: Phương pháp từng phần 21. Bảng đáp án 24. + Dạng 1.8: Nguyên hàm kết hợp đổi biến và từng phần 25. Bảng đáp án 25. + Dạng 1.9: Nguyên hàm của hàm ẩn 25. Bảng đáp án 29. Bài 2. TÍCH PHÂN 29. + Dạng 2.1: Tích phân sử dụng định nghĩa – tính chất 29. Bảng đáp án 33. + Dạng 2.2: Tích phân cơ bản 34. Bảng đáp án 39. + Dạng 2.3: Tích phân chứa trị tuyệt đối 39. Bảng đáp án 40. + Dạng 2.4: Tích phân đổi biến số 40. Bảng đáp án 47. + Dạng 2.5: Tích phân từng phần 48. Bảng đáp án 53. + Dạng 2.6: Tích phân kết hợp đổi biến và từng phần 54. Bảng đáp án 55. + Dạng 2.7: Tích phân hàm hữu tỷ 55. Bảng đáp án 56. + Dạng 2.8: Tích phân hàm ẩn 56. Bảng đáp án 61. + Dạng 2.9: Tích phân hàm phân nhánh 61. Bảng đáp án 62. + Dạng 2.10: Tích phân dựa vào đồ thị 62. Bảng đáp án 64. Bài 3. Ứng dụng tích phân 65. A Diện tích hình phẳng 65. + Dạng 3.1: Câu hỏi lý thuyết 65. Bảng đáp án 70. + Dạng 3.2: Diện tích hình phẳng được giới hạn các hàm số 70. Bảng đáp án 90. + Dạng 3.3: Bài toán chuyển động 91. Bảng đáp án 93. + Dạng 3.4: Toán thực tế – ứng dụng diện tích 93. Bảng đáp án 98. B THỂ TÍCH KHỐI TRÒN XOAY 98. + Dạng 3.5: Thể tích khối tròn xoay được giới hạn các hàm số 98. Bảng đáp án 105. + Dạng 3.6: Thể tích theo mặt cắt S(x) 105. Bảng đáp án 107. + Dạng 3.7: Bài toán thực tế ứng dụng thể tích 107. Bảng đáp án 110. Bài 4. SỐ PHỨC 111. A Khái niệm số phức 111. + Dạng 4.1: Câu hỏi lý thuyết 111. Bảng đáp án 111. + Dạng 4.2: Phần thực, phần ảo, môđun, số phức liên hợp 111. Bảng đáp án 114. + Dạng 4.3: Biểu diễn số phức 114. Bảng đáp án 118. B Các phép toán số phức 119. + Dạng 4.4: Câu hỏi lý thuyết 119. Bảng đáp án 119. + Dạng 4.5: Thực hiện các phép toán trên số phức 119. Bảng đáp án 122. + Dạng 4.6: Xác định các yếu tố số phức 122. Bảng đáp án 125. + Dạng 4.7: Tìm số phức thỏa điều kiện 125. Bảng đáp án 128. C Biểu diễn hình học 128. + Dạng 4.8: Biểu diễn hình học số phức qua các phép toán 128. Bảng đáp án 130. + Dạng 4.9: Tập hợp số phức 131. Bảng đáp án 133. D Phương trình bậc hai 133. + Dạng 4.10: Phương trình bậc 2 với hệ số thực – Tính toán biểu thức nghiệm 133. Bảng đáp án 137. + Dạng 4.11: Định lí Vi – et trong số phức 137. Bảng đáp án 139. + Dạng 4.12: Biểu diễn hình học nghiệm của phương trình bậc hai 139. Bảng đáp án 140. + Dạng 4.13: Bài toán chứa tham số m 141. Bảng đáp án 142. E CỰC TRỊ SỐ PHỨC 142. + Dạng 4.14: Sử dụng Môđun – liên hợp 142. Bảng đáp án 143. + Dạng 4.15: Phương pháp hình học 143. Bảng đáp án 145. + Dạng 4.16: Phương pháp đại số 145. Bảng đáp án 147. Phần II HÌNH HỌC. Bài 1. HỆ TRỤC TỌA ĐỘ 149. + Dạng 1.1: Tọa độ điểm, tọa độ véc – tơ 149. Bảng đáp án 153. + Dạng 1.2: Tích vô hướng và ứng dung 153. Bảng đáp án 157. + Dạng 1.3: Tích có hướng và ứng dụng 157. Bảng đáp án 160. + Dạng 1.4: Mặt cầu 160. Bảng đáp án 164. + Dạng 1.5: Phương trình mặt cầu 164. Bảng đáp án 169. Bài 2. PHƯƠNG TRÌNH MẶT PHẲNG 169. + Dạng 2.1: Xác định véc – tơ pháp tuyến 169. Bảng đáp án 170. + Dạng 2.2: Phương trình mặt phẳng 170. Bảng đáp án 174. + Dạng 2.3: Vị trí giữa hai mặt phẳng 175. Bảng đáp án 176. + Dạng 2.4: Tìm tọa độ điểm liên quan mặt phẳng 176. Bảng đáp án 177. + Dạng 2.5: Khoảng cách từ 1 điểm đến mặt phẳng và bài toán liên quan 177. Bảng đáp án 180. + Dạng 2.6: Bài toán liên quan mặt phặt phẳng – mặt cầu 180. Bảng đáp án 184. + Dạng 2.7: Phương trình mặt cầu liên quan mặt phẳng 184. Bảng đáp án 185. + Dạng 2.8: Phương trình mặt phẳng theo đoạn chắn 186. Bảng đáp án 188. + Dạng 2.9: Phương trình mặt phẳng liên quan đến góc 188. Bảng đáp án 190. + Dạng 2.10: Hình chiếu vuông góc của điểm lên mặt phẳng 190. Bảng đáp án 191. + Dạng 2.11: Bài toán liên quan cực trị 191. Bảng đáp án 196. Bài 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 196. + Dạng 3.1: Xác định véc – tơ chỉ phương 196. Bảng đáp án 198. + Dạng 3.2: Phương trình đường thẳng 198. Bảng đáp án 206. + Dạng 3.3: Phương trình mặt phẳng liên quan đường thẳng 206. Bảng đáp án 211. + Dạng 3.4: Điểm liên quan đường thẳng 212. Bảng đáp án 214. + Dạng 3.5: Khoảng cách – góc 215. Bảng đáp án 216. + Dạng 3.6: Vị trị tương đối giữa hai đường thẳng 216. Bảng đáp án 218. + Dạng 3.7: Vị trí tương đối giữa đường thẳng và mặt phẳng 218. Bảng đáp án 221. + Dạng 3.8: Bài toán liên quan: Mặt phẳng – đường thẳng – mặt cầu 221. Bảng đáp án 227. + Dạng 3.9: Hình chiếu của điểm lên đường thẳng 227. Bảng đáp án 229. + Dạng 3.10: Bài toán liên quán: Góc – khoảng cách 230. Bảng đáp án 233. + Dạng 3.11: Bài toán liên quan đến cực trị 233. Bảng đáp án 239.

Nguồn: toanmath.com

Đọc Sách

Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, hàm số logarit thuộc chương trình Toán 12 (Giải tích 12), dành cho học sinh khá, giỏi, nhằm ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit: + Phương trình 4^(x^2 – 3x + 2) + 4^(x^2 + 6x + 5) = 4^(2x^2 + 3x + 7) + 1 có bốn nghiệm phân biệt a, b, c, d theo thứ tự tăng dần. Tính giá trị biểu thức a + 2b + 3c + 4d. + Giả sử a, b là các số thực sao cho x^3 + y^3 = a.10^3z + b.10^2z đúng với mọi số thực dương x, y, z thỏa mãn điều kiện log(x + y) = z; log(x^2 + y^2) = z + 1. Giá trị của a + b là? [ads] + Cho các số thực dương a, b khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục hoành mà cắt các đường thẳng y = a^x; y = b^x, trục tung lần lượt tại M, N và A thì ta luôn có AN = 2AM (hình vẽ bên). Mệnh đề nào sau đây đúng ? + Cho hàm số y = loga x; y = logb x có đồ thị như hình vẽ bên. Đường thẳng x = 7 cắt trục hoành và các đồ thị hàm số y = loga x; y = logb x lần lượt tại H, M, N. Biết rằng 2HM = HN. Mệnh đề nào sau đây đúng? + Biết tập hợp tất cả các giá trị của tham số m để bất phương trình 4^ sin^2x + 5cos^2x ≤ m.7cos^2x có nghiệm là nửa khoảng [a/b;+vc) với a, b nguyên dương và phân số a/b tối giản. Tính giá trị của S = a + b.
Bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết - Nguyễn Xuân Chung
Tài liệu gồm có 56 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Xuân Chung, chọn lọc các câu hỏi và bài tập trắc nghiệm chủ đề mũ và lôgarit vận dụng cao (cách gọi khác: mũ và lôgarit nâng cao, mũ và lôgarit khó, mũ và lôgarit VDC …) có đáp án, lời giải chi tiết và bình luận sau bài toán, giúp bạn đọc hiểu được hướng tư duy, tiếp cận và giải quyết bài toán; phần lời giải chi tiết được trình bày ngắn gọn, có hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh; tài liệu giúp học sinh giải quyết tốt các bài toán khó trong chương trình Giải tích 12 và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung được tác giả chia thành ba phần: phần thứ nhất gồm các câu hỏi và bài tập được trích từ các đề thi THPT Quốc gia môn Toán chính thức, các đề minh họa, đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong những năm gần đây; phần thứ hai gồm các câu hỏi và bài tập được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên cả nước; phần thứ ba gồm một số câu hỏi và bài tập tương tự giúp học sinh rèn luyện thêm. [ads] Trích dẫn tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung: + Cho phương trình 2^x = √(m.2^x.cos(pi.x) – 4) với m là tham số thực. Gọi m0 là giá trị của m để phương trình đã cho có đúng 1 nghiệm thực. Mệnh đề nào sau đây đúng? + Cho hai số thực dương x và y thỏa mãn điều kiện: 3 + ln((x + y + 1)/3xy) = 9xy – 3x – 3y. Giá trị nhỏ nhất của biểu thức P = xy là? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên của m để phương trình f(2log_2 x) = m có nghiệm duy nhất trên [1/2;2). + Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a^x (a > 0 và a khác 1) qua điểm I(1;1). Giá trị của biểu thức f(2 + log_a 1/2018) bằng? + Đây là bài toán khó vì số mũ của lũy thừa là biểu thức phức tạp. Nếu để nguyên để khảo sát thì gặp khó khăn lớn khi phải đạo hàm và tìm nghiệm, rồi còn phải lập bảng biến thiên … do đó gặp tình huống này thì chúng ta nghĩ đến phương pháp đánh giá để giảm độ phức tạp. Nói như vậy: phương pháp đạo hàm là công cụ mạnh để giải toán hàm số, nhưng trong trường hợp này chưa chắc tỏ ra là “mạnh”. Bài toán trên là thi Olimpic hay sao nhỉ? Ra đề thi kiểu như vậy thì bó tay!
Phân dạng và bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án - Nguyễn Bảo Vương
Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương phân dạng và tuyển tập các bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án, các bài toán được sắp xếp theo từng nội dung trong SGK Giải tích 12 chương 2. BÀI 1 . LŨY THỪA Dạng 1. Thực hiện phép tính, rút gọi biểu thức, lũy thừa. Dạng 2. So sánh các lũy thừa. BÀI 2 . HÀM SỐ LŨY THỪA Dạng 1. Tập xác định của hàm số lũy thừa. Dạng 2. Tính chất hàm số lũy thừa. BÀI 3 . LOGARIT Bảng tóm tắt công thức Mũ-loarrit thường gặp. Dạng 1. Tính giá trị biểu thức chứa logarit. Dạng 2. Các mệnh đề liên quan đến logarit. Dạng 3. Biểu diễn logarit này theo logarit khác. BÀI 4 . HÀM SỐ MŨ – HÀM SỐ LŨY THỪA Dạng 1. Tìm tập xác định của hàm số mũ – hàm số lũy thừa. Dạng 2. Tính đạo hàm các cấp hàm số mũ, hàm số logarit. Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit. Dạng 4. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit hàm nhiều biến. Dạng 5. Sự biến thiên của hàm số mũ – logarit. Dạng 6. Toán cực trị liên quan đến hàm số mũ – logarit. Dạng 7. Đọc đồ thị hàm số mũ – logarit. Dạng 8. Bài toán lãi suất. [ads] BÀI 5 . PHƯƠNG TRÌNH MŨ Dạng 1. Phương trình mũ không chứa tham số. + Bài toán tìm nghiệm phương trình mũ không có điều kiện nghiệm. + Bài toán tính điều kiện của các nghiệm phương trình mũ. + Bài toán biến đổi phương trình mũ. Dạng 2.Phương trình mũ chứa tham số. + Bài toán tìm m để phương trình mũ có nghiệm. + Bài toán tìm m để phương trình mũ có số nghiệm bằng k. + Bài toán tìm m để phương trình mũ có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình mũ có nghiệm thuộc khoảng, đoạn cho trước. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản. + Bài toán bất phương trình mũ có điều kiện nghiệm. Dạng 2. Bất phương trình mũ chứa tham số. + Bài toán tìm m để bất phương trình có vô số nghiệm. + Bài toán tìm m để bất trình có nghiệm thuộc khoảng, đoạn, nữa khoảng cho trước. BÀI 7 . PHƯƠNG TRÌNH LOGARIT Dạng 1. Phương trình logarit không chứa tham số. + Bài toán tìm nghiệm của phương trình logarit (không có điều kiện nghiệm). + Bài toán tìm nghiệm của phương trình logarit có điều kiện nghiệm. Dạng 2. Phương trình logarit chứa tham số. + Bài toán tìm m để phương trình logarit có nghiệm. + Bài toán tìm m để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình logarit có nghiệm thuộc khoảng cho trước. BÀI 8 . BẤT PHƯƠNG TRÌNH LOGARIT Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản (không có điều kiện nghiệm). + Bài toán bất phương trình logarit có điều kiện của nghiệm. Dạng 2. Bất phương trình logarit chứa tham số. + Bài toán tìm m để bất phương trình có nghiệm. Xem thêm : Giải chi tiết các dạng toán lũy thừa, mũ và logarit – Nguyễn Bảo Vương
Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 81 trang tuyển chọn câu hỏi và bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit có lời giải chi tiết do thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh biên soạn. Các bài tập trong tài liệu đa số là các bài toán có mức độ vận dụng cao, nhiều câu là các bài toán phân loại trong các đề thi thử môn Toán. Nội dung tài liệu : Bài 01. Lũy thừa – hàm số lũy thừa Bài 02. Logarit Bài 03. Hàm số mũ và hàm số logarit + Vấn đề 1. Tìm tập xác định của hàm số của hàm số mũ và hàm số logarit + Vấn đề 2. Tính đạo hàm của hàm số mũ và hàm số logarit + Vấn đề 3. Tính đơn điệu của hàm số mũ và hàm số logarit + Vấn đề 4. Đồ thị của hàm số mũ và hàm số logarit + Vấn đề 5. Tính giá trị biểu thức chứa mũ và logarit [ads] Bài 04. Phương trình mũ, phương trình logarit bất phương trình mũ, bất phương trình loagrit + Vấn đề 1. Phương trình, bất phương trình mũ + Vấn đề 2. Phương trình, bất phương trình logarit + Vấn đề 3. Phương trình, bất phương trình mũ – logarit chứa tham số Bài 05. Hệ phương trình mũ, hệ phương trình logarit Để giải hệ phương trình mũ, hệ phương trình logarit ta thường sửa dụng các phương pháp quen thuộc như: phương pháp thế, biến đổi hệ về phương trình đại số, phương pháp hàm số … Cuối cùng là tạo ra một hệ đơn giản và kết luận nghiệm.