Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 12 môn Toán năm 2019 2020 cụm các trường THPT tỉnh Bắc Ninh

Nội dung Đề giao lưu HSG lớp 12 môn Toán năm 2019 2020 cụm các trường THPT tỉnh Bắc Ninh Bản PDF Nằm trong kế hoạch ôn tập, bồi dưỡng đội tuyển học sinh giỏi môn Toán lớp 12 để chuẩn bị cho kỳ thi HSG Toán lớp 12 năm học 2019 – 2020, vừa qua, một số trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề giao lưu HSG Toán lớp 12 năm học 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh mã đề 132, đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài 90 phút; đề thi này cũng rất hữu ích dành các em học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn đề giao lưu HSG Toán lớp 12 năm 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh : + Một đội xây dựng cần hoàn thiện một hệ thống cột trụ tròn của một cửa hàng kinh doanh gồm 10 chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 20 cm, sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng 42 cm. Chiều cao của mỗi cột trước và sau khi hoàn thiện là 4 m. Biết lượng xi măng cần dùng chiếm 80% lượng vữa và cứ một bao xi măng 50 kg thì tương đương với 3 64000cm xi măng. Hỏi cần ít nhất bao nhiêu bao xi măng loại 50 kg để hoàn thiện toàn bộ hệ thống cột đã cho? [ads] + Bạn An có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa, ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q, trong đó p và q là các số nguyên dương nguyên tố cùng nhau. Tìm q − 2p. + Cho hàm số y = x^4 – 2020x^2 – m^2 – 1 với m là tham số thực. Kết luận nào sau đây là sai? A. Đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt. B. Hàm số có 3 cực trị. C. Đồ thị hàm số nhận trục tung làm trục đối xứng. D. Đồ thị hàm số không có tiệm cận. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Thuận
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Thuận; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Thuận : + Cho đường tròn (O) có đường kính AB cố định, M là điểm di động trên (O) sao cho M khác với các điểm A, B và OM không vuông góc với AB. Các tiếp tuyến của (O) tại A và M cắt nhau tại C. Gọi (I) là đường tròn đi qua M và tiếp xúc với đường thẳng AC tại C. Đường thẳng OC cắt lại (I) tại điểm thứ hai là E. a. Chứng minh E là trung điểm của OC. b. Gọi CD là đường kính của (I). Chứng minh đường thẳng qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên (O). + Cho hai số nguyên dương k và n sao cho k =< n. Xét tất cả các tập hợp con gồm k phần tử của tập hợp {1;2;…;n}. Trong mỗi tập hợp con ta chọn ra phần tử nhỏ nhất. Chứng minh tổng tất cả các phần tử được chọn bằng k+1Cn+1. + Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = (x – 11)√(x2 + 9) trên đoạn [0;4].
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Phú Thọ
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Phú Thọ Bản PDF Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ được biên soạn theo hình thức đề tự luận kết hợp với trắc nghiệm khách quan, phần tự luận gồm 04 câu, chiếm 08 điểm, phần trắc nghiệm khách quan gồm 40 câu, chiếm 12 điểm, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ : + Cho hình nón có đỉnh S, bán kính đáy bằng a3. Một mặt phẳng đi qua đỉnh của hình nón cắt hình nón theo một thiết diện là tam giác vuông cân SAB. biết khoảng cách giữa AB và trục của hình nón bằng a. Thể tích của khối nón đã cho bằng? + Một tổ có 10 học sinh gồm 6 học sinh nam và 4 học sinh nữ, trong đó có hai học sinh nữ là Minh và Trang. Xếp ngẫu nhiên 10 học sinh trên thành một hàng ngang. Xác suất để chỉ hai học sinh Minh và Trang đứng cạnh nhau bằng? + Một khối cầu có bán kính 3cm. Một hình nón thay đổi có đỉnh S và đáy là đường tròn đường kính AB nằm trên mặt cầu như hình vẽ. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình Bản PDF Ngày 08 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình : + Cho tứ diện ABCD và hai điểm M, N lần lượt thuộc các cạnh AB, AC sao cho 2AM = BM, 2CN = AN. Mặt phẳng (P) đi qua hai điểm M, N và song song với cạnh AD, cắt các cạnh BD và CD lần lượt tại K và L. a. Gọi V là thể tích của khối tứ diện ABCD. Tính thể tích khối đa diện BCMNLK theo V. b. Giả sử tứ diện ABCD có BC = x (0 < x < √3), tất cả các cạnh còn lại đều bằng 1. Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất. + Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi A, B là các giao điểm của (C) với các trục tọa độ. Tìm trên (C) các điểm M có tọa độ nguyên sao cho tam giác MAB có diện tích bằng 8 (đvdt). + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn (O), chọn ngẫu nhiên 3 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tam giác tù. File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre Bản PDF Thứ Tư ngày 24 tháng 02 năm 2021, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho hàm số y = (x + 1)/(3 – x) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Tìm các số thực m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt M, N tạo thành tam giác MNI có trọng tâm nằm trên (C). + Gọi M là tập hợp các số tự nhiên gồm 5 chữ số khác nhau đôi một được lập từ tập X = {0; 1; 2; 3; 4; 5}. Lấy ngẫu nhiên 2 phần tử của M. Tính xác suất để có ít nhất một trong hai phần tử đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S. AMPN. Tìm giá trị nhỏ nhất của V1/V.