Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2023 phòng GDĐT Hai Bà Trưng - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm 2023 phòng Giáo dục và Đào tạo UBND quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày … tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Sân vận động Morodok Techo ở thủ đô PhnomPenh của Campuchia có sức chứa 60.000 chỗ ngồi là nơi phục vụ cho SEA Games 32. Một đơn vị được giao nhiệm vụ in vé vào sân. Thực tế mỗi ngày đơn vị đó đã in được nhiều hơn 2000 tấm vé so với kế hoạch. Vì thế đơn vị sản xuất đã hoàn thành sớm công việc trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày đơn vị đó phải in bao nhiêu tấm vé? (Giả sử số tấm vé mỗi ngày đơn vị sản xuất đó in là như nhau). + Một hình nón có bán kính đáy bằng 5cm và diện tích xung quanh là 265 cm. Tính thể tích của hình nón đó. + Cho một điểm M nằm ngoài đường tròn (O), kẻ tiếp tuyến MA tới đường tròn (O) với A là tiếp điểm. Qua điểm A kẻ đường thẳng song song với MO cắt đường tròn (O) tại điểm C khác A. Đường thẳng MC cắt đường tròn (O) tại B, K là trung điểm dây cung BC. 1) Chứng minh tứ giác OMAK là tứ giác nội tiếp. 2) Chứng minh 2 MA MB MC và tam giác ABK vuông tại A. 3) Kẻ đường kính AE của đường tròn (O). Chứng minh tam giác ACK đồng dạng với tam giác EMO.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Ba Đình Hà Nội
Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 của phòng GD&ĐT Ba Đình – Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Kỳ thi đã diễn ra vào ngày 29 tháng 04 năm 2021. Trích dẫn một số bài toán từ đề KSCL Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn một ngôi nhà, mất 4 ngày thì xong việc. Hai người cùng làm trong 1 ngày thì người thứ nhất có việc bận nên một mình người thứ hai làm trong 6 ngày nữa thì mới xong công việc. Hỏi mỗi người làm việc một mình thì sau bao lâu xong công việc? Cho một hình trụ có bán kính đáy là 3cm. Biết diện tích xung quanh của hình trụ là 907 cm2. Tính thể tích của hình trụ. Cho đường tròn (O) đường kính AB. Qua trung điểm C của OA vẽ dây DE vuông góc với OA. Gọi K là điểm tùy ý trên cung nhỏ BD (K khác B D). H là giao điểm của AK và DE. a) Chứng minh tứ giác BCHK là tứ giác nội tiếp. b) Chứng minh AH.AK = AD2. c) Lấy điểm F trên đoạn KE sao cho KF = KB. Chứng minh tam giác KFB là tam giác đều. Xác định vị trí của điểm K trên cung nhỏ BD để tổng KD + KB + KE đạt giá trị lớn nhất.
Đề KSCL lớp 9 môn Toán đợt 3 năm 2020 2021 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề KSCL lớp 9 môn Toán đợt 3 năm 2020 2021 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương Đề KSCL Toán lớp 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương Đề KSCL (khảo sát chất lượng) Toán lớp 9 đợt 3 năm 2020 – 2021 của phòng GD&ĐT Kim Thành – Hải Dương bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn câu hỏi từ đề KSCL Toán lớp 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương: Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 2 ngày, tổ thứ hai may trong 3 ngày thì cả hai tổ may được 470 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo? Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn. Cho các số x, y, z, t không âm thoả mãn: x.y + yz + zt + tx = 1. Tìm giá trị nhỏ nhất của biểu thức: 5x^2 + 4y^2 + 5z^2 + t^2. Đề KSCL Toán lớp 9 đợt 3 năm 2020 – 2021 từ phòng GD&ĐT Kim Thành – Hải Dương nhằm kiểm tra năng lực của học sinh và giúp họ ôn tập, củng cố kiến thức Toán một cách hiệu quả.
Đề KSCL môn Toán năm 2020 2021 trường THCS Nguyễn Du Hà Nội
Nội dung Đề KSCL môn Toán năm 2020 2021 trường THCS Nguyễn Du Hà Nội Bản PDF - Nội dung bài viết Đề KSCL môn Toán năm 2020 - 2021 trường THCS Nguyễn Du Hà Nội Đề KSCL môn Toán năm 2020 - 2021 trường THCS Nguyễn Du Hà Nội Chào quý thầy, cô giáo và các em học sinh! Hôm nay Sytu xin mang đến cho các bạn đề KSCL môn Toán lớp 9 năm 2020 - 2021 của trường THCS Nguyễn Du tại Hà Nội. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm, kỳ thi đã diễn ra vào ngày 26 tháng 05 năm 2021. Dưới đây là một đoạn trích từ đề KSCL môn Toán lớp 9 năm 2020 - 2021 trường THCS Nguyễn Du Hà Nội: + Trong mặt phẳng tọa độ Oxy, cho parabol 2y=x^2 và đường thẳng d:y=mx+3. a) Chứng minh với mọi giá trị của m, (d) luôn cắt (P) tại hai điểm phân biệt có hoành độ 1/2. b) Tìm tất cả các giá trị của m để 2mx+1 = 2x^2 + 4. + Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O). Các đường cao AD, BE, CF cùng đi qua trực tâm H. Gọi M, N lần lượt là hình chiếu vuông góc của D lên AB, AC. Đường thẳng MN cắt BE tại điểm P. 1) Chứng minh bốn điểm A, M, D, N cùng thuộc một đường tròn. 2) Chứng minh tứ giác BMPD là tứ giác nội tiếp và tứ giác DPEN là hình chữ nhật. 3) Gọi K là điểm đối xứng với D qua A, và L là hình chiếu vuông góc của D lên SK. Chứng minh G là trung điểm của đoạn thẳng SD và trung điểm của đoạn thẳng DL nằm trên đường tròn (O). + Cho a, b là các số thực dương thỏa mãn 33ab=55ab. Tìm giá trị lớn nhất của biểu thức P = 2a^2 + ab^2 + b. Hy vọng rằng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn thành công!
Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận Hai Bà Trưng Hà Nội
Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận Hai Bà Trưng Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 – 2021 Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội Xin chào quý thầy cô giáo và các em học sinh! Hôm nay Sytu xin giới thiệu đến các bạn đề KSCL Toán lớp 9 năm 2020 – 2021 của Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội. Đề thi này có đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các em có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Đề thi được tổ chức vào ngày thứ Hai, ngày 24 tháng 5 năm 2021. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: + Cho parabol \(y = x^2\) và đường thẳng \(y = mx + 2d\) (với \(m\) là tham số). Hãy chứng minh rằng đỉnh của parabol và đường thẳng luôn cắt nhau tại hai điểm phân biệt \(A\) và \(B\) nằm ở hai phía khác của trục tung. Tìm giá trị của \(m\) sao cho diện tích tam giác \(OAB\) (với \(O\) là gốc tọa độ) bằng 3. + Cho đường tròn \((O, R)\) đường kính \(AB\). Lấy điểm \(C\) nằm trên đường tròn sao cho \(AC = R\). Điểm \(D\) nằm trên cung nhỏ \(BC\) (khác \(B\) và \(C\)). Kéo dài \(AC\) và \(BD\) cắt nhau tại \(E\); kẻ \(EH\) vuông góc với \(AB\) tại \(H\) (\(H\) nằm trên \(AB\)), \(EH\) cắt \(AD\) tại \(I\). Hãy chứng minh rằng tứ giác \(AHDE\) là tứ giác nội tiếp. Sau đó, chứng minh rằng \(CF\) song song với \(EH\) và tam giác \(BCF\) là tam giác đều. Cuối cùng, tìm vị trí của \(D\) trên cung nhỏ \(BC\) để chu vi tứ giác \(ABDC\) đạt giá trị lớn nhất. + Cho ba số thực dương \(a, b, c\) có tổng thỏa mãn \(abc = 3\). Hãy chứng minh bất đẳng thức: \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{9}{a + b + c}\). Hy vọng rằng các em sẽ thấy đề thi này là một cơ hội tốt để rèn luyện và nắm vững kiến thức Toán lớp 9. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!