Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Quỳnh Phụ Thái Bình

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Quỳnh Phụ Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD ĐT Quỳnh Phụ Thái Bình Đề học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD ĐT Quỳnh Phụ Thái Bình Chúng ta sẽ cùng khám phá những bài toán thú vị trong đề học sinh giỏi môn Toán lớp 8 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. 1. Cho hai đa thức f(x) = (x + 1)(x + 2)(x + 3)(x + 4)(x + 5) + 2014 và g(x) = x^2 + 7x + 8. Hãy tìm đa thức dư khi chia đa thức f(x) cho đa thức g(x). 2. Xét hai đa thức: f(x) = x^3 - x - 6 và g(x) = x^2 + ax + b. Tìm giá trị của a và b sao cho f(x) chia hết cho g(x). Sau đó, xác định đa thức thương. 3. Trong tam giác ABC đều cố định, M là trung điểm của BC. Điểm E di chuyển trên cạnh AB và điểm F di chuyển trên cạnh AC sao cho góc EMF bằng 60 độ. Hãy xác định vị trí của điểm E trên cạnh AB sao cho tổng đoạn thẳng AE + AF là lớn nhất. Cùng nhau tham gia vào cuộc thi học sinh giỏi và thách đố bản thân với những bài toán thú vị, thú vị từ đề thi này nhé!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tam Dương Vĩnh Phúc
Nội dung Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Tam Dương, Vĩnh Phúc Đề thi HSG huyện lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Tam Dương, Vĩnh Phúc Chào mừng quý thầy, cô giáo và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Tam Dương, tỉnh Vĩnh Phúc tổ chức. Đề thi bao gồm 09 bài toán tự luận, thời gian làm bài là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ Đề thi HSG huyện Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Tam Dương - Vĩnh Phúc: 1. Cho a, b, c là độ dài ba cạnh của tam giác ABC thỏa mãn hệ thức a³ + b³ + c³ = 3abc. Hỏi tam giác ABC là tam giác gì? 2. Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N. 3. Trên tờ giấy kẻ vô hạn các ô vuông và được tô bởi các màu đỏ hoặc xanh thỏa mãn: bất cứ hình chữ nhật nào có kích thước 2x3 thì có đúng hai ô màu đỏ. Hỏi hình chữ nhật có kích thước 2022 x 2023 có bao nhiêu ô màu đỏ? Chúc các em học sinh tự tin và thành công trong việc làm bài thi. Hãy rèn luyện kiến thức, nắm vững phương pháp giải bài tập để đạt kết quả cao trong Đề thi HSG huyện Toán lớp 8 năm học 2022 - 2023. Trân trọng cảm ơn!
Đề thi học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thiệu Hóa Thanh Hóa
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thiệu Hóa Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 phòng GD&ĐT Thiệu Hóa Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 phòng GD&ĐT Thiệu Hóa Thanh Hóa Sytu xin tự giới thiệu đến các thầy cô và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 21 tháng 02 năm 2023. Trích dẫn đề thi học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Thiệu Hóa – Thanh Hóa: + Bài toán 1: Cho x, y, z là các số thực dương thỏa mãn: x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6. Hãy tính giá trị của biểu thức P = x2021 + y2022 + z2023. + Bài toán 2: Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Bài toán 3: Cho tứ giác ABCD có các góc B = D = 90° và AB > AD, lấy điểm M trên cạnh AB sao cho AM = AD. Đường thẳng DM cắt BC tại N. Gọi H là hình chiếu của D trên AC, K là hình chiếu của C trên AN. Chứng minh rằng: AM2 = AH.AC. AHM = AMC và tam giác CDN là tam giác cân. MHN = MCK. Đây là những bài toán thú vị và đầy thách thức đối với các em học sinh lớp 8. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng và kiến thức Toán một cách hiệu quả. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề thi HSG lớp 8 môn Toán năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An
Nội dung Đề thi HSG lớp 8 môn Toán năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2022-2023 trường THCS Cao Xuân Huy Nghệ An Đề thi HSG lớp 8 môn Toán năm 2022-2023 trường THCS Cao Xuân Huy Nghệ An Sau đây là bộ đề thi chọn học sinh giỏi cấp trường môn Toán lớp 8 năm học 2022-2023 của trường THCS Cao Xuân Huy, tỉnh Nghệ An. 1. Cho hình vuông ABCD, trên tia đối của tia BA lấy M, trên tia đối của tia CB lấy N sao cho AM = CN. a) Chứng minh MDN vuông cân b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi K là trung điểm MN. Chứng minh O, C, K thẳng hàng. 2. Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB). Gọi I là trung điểm của AD, trên tia đối của tia BC lấy điểm K sao cho BK = BH. Chứng minh KD vuông góc với HI. 3. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d. Chứng minh a^2 + b^2 + c^2 + d^2 là tổng của ba số chính phương. Đây là những câu hỏi thú vị và đòi hỏi sự thông minh, logic của các bạn học sinh lớp 8. Chúc các em thành công trong việc giải quyết các bài toán này!
Đề thi Olympic lớp 8 môn Toán năm 2021 2022 trường THCS Tây Sơn Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán năm 2021 2022 trường THCS Tây Sơn Hà Nội Bản PDF - Nội dung bài viết Giới Thiệu Đề Thi Olympic Toán Lớp 8 Trường THCS Tây Sơn, Hà Nội Giới Thiệu Đề Thi Olympic Toán Lớp 8 Trường THCS Tây Sơn, Hà Nội Xin chào quý thầy cô và các bạn học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi Olympic môn Toán lớp 8 năm học 2021 – 2022 của trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Đề thi bao gồm những bài toán thú vị, khó khăn và yêu cầu sự tư duy logic, khéo léo. Dưới đây là một số câu hỏi mẫu trong đề thi: Câu 1: Trong tam giác ABC vuông tại A (AB < AC) và đường cao AH. Chứng minh rằng AC2 = BC.HC. Câu 2: Trong tam giác ABC vuông tại A, lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng CH.CB = CI.CK. Câu 3: Tìm giá trị lớn nhất của biểu thức A = 8 – x4 + 2x2. Đây là một số câu hỏi đại diện cho độ khó và yêu cầu tư duy cao trong đề thi Olympic Toán lớp 8. Hy vọng các bạn học sinh sẽ rèn luyện, tự tin và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các bạn thành công!