Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội

Nội dung Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF Đề thi Olympic Toán lớp 11 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán lớp 11 năm 2017 – 2018 : + Một đoàn tàu có 6 toa ở sân ga, trên sân ga có 6 hành khách chuẩn bị lên tàu, mỗi người độc lập với nhau và chọn toa tàu một cách ngẫu nhiên. a. Hỏi có bao nhiêu cách xếp 6 hành khách lên các toa tàu đó sao cho 6 người cùng lên một toa hoặc mỗi người lên một toa khác nhau? b. Tính xác suất sao cho một toa có 3 hành khách, một toa có 2 hành khách, 1 toa có 1 hành khách, còn 3 toa còn lại không có ai lên. [ads] + Biết rằng các số x, 2y – x, x + 2y theo thứ tự lập thành cấp số cộng. Đồng thời các số 1, y – 1, x + 2y – 1 theo thứ tự lập thành cấp số nhân. Hãy tìm x, y. + Xét khai triển (x + 1/x)^n (x ≠ 0, n ≥ 3, n ∈ N*). Biết tích của số hạng thứ tư tính từ phải sang và số hạng thứ tư kể từ trái sang bằng 14400. Tìm n.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển Toán 11 năm 2022 - 2023 trường THPT Chu Văn An - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề chọn đội tuyển học sinh giỏi môn Toán 11 năm học 2022 – 2023 trường THPT Chu Văn An, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề chọn đội tuyển Toán 11 năm 2022 – 2023 trường THPT Chu Văn An – Hà Nội : + Cho hàm số y = x3 + 2mx2 − 3x (1) và đường thẳng d: y – mx + 2 = 0 (với m là tham số). Tìm m để đường thẳng d và đồ thị hàm số (1) cắt nhau tại ba điểm phân biệt A, B, C sao cho diện tích tam giác OBC bằng 5 (với A là điểm có hoành độ không đổi và O là gốc toạ độ). + Cho tứ diện SABC có AB = AC = a, BC = a/2, SA = a3 (a > 0). Biết góc SAB = 30 và góc SAC = 30. Tính thể tích khối tứ diện theo a. + Chứng minh rằng nếu một tứ diện có độ dài một cạnh lớn hơn 1, độ dài các cạnh còn lại đều không lớn hơn 1 thì thể tích của khối tứ diện đó không lớn hơn 1/8.
Đề học sinh giỏi Toán 11 năm 2022 - 2023 trường THPT Bình Chiểu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 11 năm 2022 – 2023 trường THPT Bình Chiểu – TP HCM : + Một viên gạch hình vuông có cạnh là 30 cm được thiết kế như hình vẽ. Người ta dựng một cung tròn có tâm là một đỉnh của viên gạch với bán kính 30 cm, sau đó dựng thêm một cung tròn nữa như vậy nhưng có tâm là đỉnh đối diện với đỉnh trên. Em hãy tính diện tích phần giao nhau của hai cung tròn đó. + Bảng giá cước xe taxi Mai Linh loại xe Kia Morning như sau: 10 ngàn đồng cho 0,6 km đầu tiên, 13 ngàn đồng/km cho đoạn tiếp theo nếu quãng đường đi hơn 0,6 km nhưng không quá 25 km và 11 ngàn đồng/km cho đoạn tiếp theo nếu quãng đường đi trên 25 km. a. Hãy thiết lập hàm số f x biểu thị giá tiền (ngàn đồng) phải trả cho x km di chuyển. b. Vẽ đồ thị hàm số f x với 0 x 50. c. Tìm quãng đường đi được nếu số tiền xe là 371 200 đồng. + Một nhóm bạn gồm có 3 thành viên: An, Bình, Chi. Mỗi bạn học giỏi hai trong sáu môn: Toán, Văn, Anh, Lí, Hóa, Sinh. Người ta biết về các bạn trên như sau: Bạn giỏi Văn và bạn giỏi Sinh là hàng xóm của nhau. An trẻ nhất trong 3 bạn. Bạn Bình, bạn giỏi Toán và bạn giỏi Sinh thường đi cùng với nhau trên đường về nhà. Bạn giỏi Toán nhiều tuổi hơn bạn giỏi Anh. Bạn giỏi Hóa, bạn giỏi Anh và bạn An khi rảnh rỗi thường hay đi chơi bóng chuyền với một bạn thứ 4. Em hãy cho biết mỗi bạn giỏi những môn nào và giải thích.
Đề học sinh giỏi Toán 11 năm 2021 - 2022 trường THPT chuyên Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi (HSG) môn Toán 11 năm học 2021 – 2022 trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi Toán 11 năm 2021 – 2022 trường THPT chuyên Bắc Ninh : + Cho m > 1 là một số nguyên. Chứng minh rằng với mọi số nguyên n có thể biểu diễn dưới dạng n = a + b, trong đó a là một số nguyên nguyên tố cùng nhau với m và b là một số nguyên sao cho b2 ≡ b( mod m). + Đề thi THPT môn Toán gồm 50 câu trắc nghiệm khách quan, mỗi câu có 4 phương án trả lời và chỉ có 1 phương án đúng, mỗi câu trả lời đúng được cộng 0, 2 điểm, điểm tối đa là 10 điểm. Một học sinh có năng lực trung bình đã làm đúng được 25 câu( từ câu 1 đến câu 25), các câu còn lại học sinh đó không biết cách giải nên chọn phương án ngẫu nhiên cả 25 câu còn lại. Tính xác suất để điểm thi môn Toán của học sinh đó lớn hơn 6 điểm nhưng không vượt quá 8 điểm (làm tròn đến hàng phần nghìn). + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, G là trọng tâm ∆ABM; điểm D(7; −2) nằm trên đoạn MC sao cho GA = GD. Viết phương trình đường thẳng AB, biết hoành độ của A nhỏ hơn 4 và AG có phương trình 3x − y − 13 = 0.
Đề HSG lớp 10 11 môn Toán năm 2021 - 2022 trường chuyên Nguyễn Huệ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi lớp 10 & lớp 11 môn Toán năm học 2021 – 2022 trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội. Trích dẫn đề HSG lớp 10 & 11 môn Toán năm 2021 – 2022 trường chuyên Nguyễn Huệ – Hà Nội : + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau mà mỗi chữ số lẻ xuất hiện đúng một lần và ba chữ số chẵn khác nhau mà mỗi chữ số chẵn có mặt đúng hai lần. + Cho tam giác ABC và điểm P thuộc miền trong tam giác ABC. Lấy điểm Q sao cho các đường thẳng AQ, BQ, CQ lần lượt đối xứng với các đường thẳng AP, BP, CP qua đường phân giác trong của các góc A, B, C. Gọi M, N lần lượt là hình chiếu của P lên AB, AC; K, L lần lượt là hình chiếu của Q lên AB, AC. a) Chúng minh rằng các điểm M, N, K, L cùng thuộc một đường tròn. Tìm tâm của đường tròn đó. b) Gọi T là giao điểm của MN và KL.Chứng minh rằng AT vuông góc PQ. + Giả sử a b c là các số thực không âm thỏa mãn a2 + b2 + c2 = 3. Chứng minh?