Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt

Tài liệu gồm 273 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập các dạng bài tập trắc nghiệm chủ đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 rèn luyện khi học chương trình Hình học 12 chương 3. 1 HỆ TỌA ĐỘ TRONG KHÔNG GIAN. 1. Bài toán liên quan đến véc-tơ và độ dài đoạn thẳng. 2. Bài toán liên quan đến trung điểm tọa độ trọng tâm. 3. Bài toán liên quan đến hai vé-tơ bằng nhau. 4. Hai véc-tơ cùng phương, ba điểm thẳng hàng. 5. Nhóm bài toán liên quan đến hình chiếu, điểm đối xứng của điểm lên trục, lên mặt phẳng tọa độ. 6. Nhóm bài toán liên quan đến tích vô hướng của hai véc-tơ. 7. Nhóm bài toán liên quan đến tích có hướng của hai véc-tơ. 8. Xác định các yếu tố cơ bản của mặt cầu. 9. Viết phương trình mặt cầu loại cơ bản. 2 PHƯƠNG TRÌNH MẶT PHẲNG. 1. Véc-tơ pháp tuyến – Véc-tơ chỉ phương. 2. Phương trình tổng quát của mặt phẳng. 3. Phương trình mặt phẳng theo đoạn chắn. 4. Các mặt phẳng tọa độ (thiếu cái gì, cái đó bằng 0). 5. Khoảng cách. 6. Góc. 7. Vị trí tương đối. 8. Các trường hợp đặc biệt của mặt phẳng. 9. Xác định các yếu tố của mặt phẳng. 10. Khoảng cách, góc và vị trí tương đối. 11. Viết phương trình mặt phẳng (cần tìm một điểm đi qua + VTPT). 12. Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương. 13. Viết phương trình mặt phẳng (P) qua điểm A, B và vuông góc với mặt phẳng (Q). 14. Viết phương trình mặt phẳng (P) qua M và vuông góc với hai mặt phẳng (α), (β). 15. Viết phương trình mặt phẳng đoạn chắn. 16. Một số bài toán viết phương trình mật phẳng liên quan đến khoảng cách cơ bản. 17. Viết phương trình mặt phẳng (P) đi qua M và qua giao tuyến của hai mặt phẳng (α), (β). 3 PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 1. Kiến thức cơ bản cần nhớ. 2. Xác định các yếu tố cơ bản của đường thẳng. 3. Góc. 4. Khoảng cách. 5. Vị trí tương đối. 6. Viết phương trình đường thẳng. 7. Hình chiếu, điểm đối xứng và bài toán liên quan (vận dụng cao). 8. Bài toán cực trị và một số bài toán khác (vận dụng cao).

Nguồn: toanmath.com

Đọc Sách

Phiếu bài tập ứng dụng tích phân có đáp án và lời giải
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (CLB Giáo Viên Trẻ Thành Phố Huế), tuyển tập 05 phiếu bài tập ứng dụng tích phân có đáp án và lời giải, giúp học sinh lớp 12 rèn luyện khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu phiếu bài tập ứng dụng tích phân có đáp án và lời giải: Phiếu ôn tập số 01 (Trang 02). Đáp án và lời giải phiếu ôn tập số 01 (Trang 07). Phiếu ôn tập số 02 (Trang 18). Đáp án và lời giải phiếu ôn tập số 02 (Trang 24). Phiếu ôn tập số 03 (Trang 35). Đáp án và lời giải phiếu ôn tập số 03 (Trang 40). Phiếu ôn tập số 04 (Trang 52). Đáp án và lời giải phiếu ôn tập số 04 (Trang 57). Phiếu ôn tập số 05 (Trang 68). Đáp án và lời giải phiếu ôn tập số 05 (Trang 74).
Bài tập nguyên hàm dành cho học sinh trung bình - yếu
Tài liệu gồm 74 trang, tổng hợp bài tập trắc nghiệm nguyên hàm mức độ nhận biết – thông hiểu (NB – TH), có đáp án và lời giải chi tiết, phù hợp với đối tượng học sinh trung bình – yếu trong quá trình học tập chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Dạng toán 1: Sử dụng nguyên hàm cơ bản (Trang 1). Dạng toán 2: Nguyên hàm có điều kiện (Trang 6). Dạng toán 3: Phương pháp đổi biến số (Trang 10). Dạng toán 4: Phương pháp từng phần (Trang 14).
Các dạng bài tập VDC nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 138 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) nguyên hàm, tích phân và ứng dụng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC nguyên hàm, tích phân và ứng dụng: CHỦ ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. Dạng 1: Tìm nguyên hàm bằng các phép biến đổi sơ cấp. Dạng 2: Phương pháp đổi biến dạng 1, đặt u = u(x). Dạng 3: Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 5: Các bài toán thực tế ứng dụng nguyên hàm. CHỦ ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân. CHỦ ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Các dạng bài tập VDC ứng dụng của tích phân
Tài liệu gồm 55 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) ứng dụng của tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC ứng dụng của tích phân: A. KIẾN THỨC SÁCH GIÁO KHOA CẦN NẮM 1. Diện tích hình phẳng. 2. Thể tích của khối tròn xoay. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.