Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 CTST

Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST). MỤC LỤC : BÀI 1 . GÓC LƯỢNG GIÁC 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 6. Dạng 1. Đơn vị đo độ và rađian 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 6. Dạng 2. Biểu diễn cung lượng giác trên đường tròn lượng giác 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 7. Dạng 3. Độ dài của một cung tròn 8. 1. Phương pháp giải 8. 2. Các ví dụ minh họa 8. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA BÀI TẬP 9. D. BÀI TẬP TRẮC NGHIỆM 15. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 25. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 25. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 28. Dạng 1. Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 28. 1. Phương pháp giải 28. 2. Các ví dụ minh họa 28. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 31. 1. Phương pháp giải 31. 2. Các ví dụ minh họa 31. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 33. 1. Phương pháp giải 33. 2. Các ví dụ minh họa 33. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 36. D. BÀI TẬP TRẮC NGHIỆM 41. BÀI 3 . CÁC CÔNG THỨC LƯỢNG GIÁC 66. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 66. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 66. Dạng 1. Sử dụng công thức cộng 66. 1. Phương pháp giải 66. 2. Các ví dụ minh họa 67. Dạng 2. Sử dụng công thức nhân đôi và công thức hạ bậc 71. 1. Phương pháp 71. 2. Các ví dụ minh họa 72. Dạng 3. Công thức biến đổi tổng thành tích và tích thành tổng 76. 1. Phương pháp giải. 76. 2. Các ví dụ minh họa 76. Dạng 4. bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 81. 1. Phương pháp giải 81. 2. Các ví dụ điển hình 81. Dạng 5. chứng minh đẳng thức, bất đẳng thức trong tam giác 84. 1. Phương pháp giải 84. 2. Các ví dụ minh họa 84. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 91. D. BÀI TẬP TRẮC NGHIỆM 98. BÀI 4 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 127. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 127. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 130. Dạng 1. Tìm tập xác đinh của hàm số 130. 1. Phương pháp 130. 2. Các ví dụ mẫu 131. Dạng 2. Xét tính chẵn lẻ của hàm số 133. 1. Phương pháp 133. 2. Các ví dụ mẫu 133. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 136. 1. Phương pháp 136. 2. Ví dụ mẫu 136. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 139. 1. Phương pháp 139. 2. Ví dụ mẫu 140. Dạng 5. Đồ thị của hàm số lượng giác 141. 1. Phương pháp 141. 2. Các ví dụ mẫu 142. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 145. D. BÀI TẬP TRẮC NGHIỆM 148. BÀI TẬP CUỐI CHƯƠNG 1 178. CÂU HỎI TRẮC NGHIỆM 178. BÀI TẬP TỰ LUẬN 181. BÀI TẬP TỔNG ÔN CHƯƠNG 1 185. PHẦN 1. TRẮC NGHIỆM 185. PHẦN 2. TỰ LUẬN 193.

Nguồn: toanmath.com

Đọc Sách

Vẻ đẹp lời giải hình học qua các bài toán lượng giác
Tài liệu gồm 09 trang, được biên soạn bởi Ths. Hoàng Minh Quân (giáo viên Toán trường THPT chuyên Nguyễn Huệ, Hà Nội), trình bày vẻ đẹp lời giải hình học qua các bài toán lượng giác. Trong chương trình toán THPT, để chứng minh một số hệ thức lượng giác, ta thường sử dụng các biến đổi lượng giác. Câu hỏi đặt ra, ngoài các cách biến đổi lượng giác thì ta có cách tiếp cận nào khác để giải quyết vấn đề không? Để trả lời câu hỏi này, bài viết sau đây mời bạn đọc cùng đến với hướng tiếp cận hình học cho chứng minh một số hệ thức lượng giác. I. CÁC ĐẲNG THỨC LƯỢNG GIÁC. II. BẤT ĐẲNG THỨC LƯỢNG GIÁC. III. BÀI TẬP TỰ LUYỆN.
Hàm số lượng giác và phương trình lượng giác - Lê Minh Tâm
Tài liệu gồm 124 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, phân loại và hướng dẫn giải các dạng bài tập chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm số lượng giác và phương trình lượng giác. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. I. Ôn tập. 1.1. Các hệ thức cơ bản. 1.2. Cung liên kết. 1.3. Công thức cộng. 1.4. Công thức nhân và hạ bậc. 1.5. Công thức biến đổi tổng thành tích. 1.6. Công thức biến đổi tích thành tổng. 1.7. Bảng giá trị lượng giác của một số góc đặc biệt. II. Hàm số y = sinx và hàm số y = cosx. III. Hàm số y = tanx và hàm số y = cotx. IV. Bài tập. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Tính chẵn lẻ của hàm số lượng giác. Dạng 03. Chu kỳ hàm số lượng giác. Dạng 04. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. I. Phương trình sinx = a và phương trình cosx = a. II. Phương trình tanx = a và phương trình cotx = a. III. Bài tập. BÀI 3 . PHƯƠNG TRÌNH BẬC HAI THEO HÀM LƯỢNG GIÁC. I. Dạng cơ bản. II. Bài tập. BÀI 4 . PHƯƠNG TRÌNH BẬC NHẤT VỚI HÀM SIN – COS. I. Dạng cơ bản. II. Bài tập. BÀI 5 . PHƯƠNG TRÌNH ĐẲNG CẤP. I. Dạng cơ bản. II. Bài tập. BÀI 6 . PHƯƠNG TRÌNH ĐỐI XỨNG. I. Dạng cơ bản. II. Bài tập. BÀI 7 . CÁC LOẠI PHƯƠNG TRÌNH KHÁC. I. Biến đổi tích thành tổng. 1.1. Ví dụ minh họa. 1.2. Bài tập rèn luyện. II. Biến đổi tổng thành tích. 2.1. Ví dụ minh họa. 2.2. Bài tập rèn luyện. III. Tổng hợp các phương pháp. 3.1. Ví dụ minh họa. 3.2. Bài tập rèn luyện. IV. Phương trình lượng giác có điều kiện. 4.1. Ví dụ minh họa. 4.2. Bài tập rèn luyện. BÀI 8 . TỔNG ÔN ĐẠI SỐ VÀ GIẢI TÍCH 11 CHƯƠNG I. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác. Dạng 03. Phương trình lượng giác. Dạng 04. Tổng hợp phương trình lượng giác.
Trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1)
Tài liệu gồm 188 trang, tổng hợp trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): hàm số lượng giác và phương trình lượng giác; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. Mục lục tài liệu trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): PHẦN I . TỰ LUẬN (Trang 1). BÀI 1 . HÀM SỐ LƯỢNG GIÁC (Trang 1). VẤN ĐỀ 01. Tìm tập xác định của hàm số (Trang 4). VẤN ĐỀ 02. Xét tính chẵn, lẻ của hàm số (Trang 6). VẤN ĐỀ 03. Xét tính tuần hoàn và tìm chu kỳ của hàm số (Trang 7). VẤN ĐỀ 04. Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số (Trang 9). VẤN ĐỀ 05: Vẽ đồ thị của một hàm số suy ra từ một đồ thị của hàm số đã biết (Trang 16). BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC (Trang 21). VẤN ĐỀ 01. Phương trình lượng giác cơ bản (Trang 21). VẤN ĐỀ 02. Một số phương pháp giải phương trình lượng giác (Trang 35). VẤN ĐỀ 03. Bài tập tổng hợp (Trang 45). BÀI 3 . BÀI TẬP TRONG ĐỀ ĐH – CĐ CÁC NĂM TRƯỚC (Trang 68). Dạng 1. Công thức lượng giác (Trang 68). Dạng 2. Đưa về phương trình tích (Trang 69). Dạng 3. Biến đổi tổng thành tích – tích thành tổng (Trang 73). Dạng 4. Phương trình bậc 2 – bậc 3 (Trang 75). Dạng 5. Phương trình bậc nhất theo sinx, cosx (Trang 80). Dạng 6. Phương trình đẳng cấp (Trang 83). Dạng 7. Phương trình đối xứng (Trang 84). Dạng 8. Phương pháp hạ bậc (Trang 84). Dạng 9. Công thức nhân ba (Trang 89). Dạng 10. Phương trình có chứa giá trị tuyện đối. Phương trình có chứa căn thức (Trang 87). Dạng 11. Phương trình có chứa tham số (Trang 89). PHẦN II . TRẮC NGHIỆM (Trang 90). A – ĐỀ BÀI (Trang 90). B – BẢNG ÐÁP ÁN (Trang 124). C – HƯỚNG DẪN GIẢI (Trang 125). Trong mỗi dạng bài, tài liệu tóm tắt lý thuyết SGK, hướng dẫn phương pháp giải toán, kèm theo các ví dụ minh họa từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết.
Phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1 (Toán 11). BÀI 1 . HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tìm tập xác đinh của hàm số. Dạng 2. Xét tính chẵn lẻ của hàm số. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. BÀI 3 . MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP. Dạng 1. Phương trình bậc nhất đối với một hàm số lượng giác. Dạng 2. Phương trình bậc nhất đối với sin x và cos x. Dạng 3. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 4. Phương trình bậc hai đối với sin x và cos x. Dạng 5. Phương trình chứa sin x ± cos x và sin x . cos x.