Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A tại x thỏa mãn |x + 1| = |−1|. c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên. + Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm bất kì trên cạnh BC. Tia Ax vuông góc với AM cắt đường thẳng CD tại K. Gọi I là trung điểm của MK. Tia AI cắt đường thẳng CD tại E. Đường thẳng qua M song song với AB cắt AI tại N. a) Tứ giác MNKE là hình gì? Vì sao? b) Chứng minh AM2 = KC. KE. c) Chứng minh chu vi tam giác MEC không đổi khi M di động trên cạnh BC. d) Gọi F là giao điểm của AM với đường thẳng DC. Chứng minh 1/AF2 + 1/AM2 không phụ thuộc vào vị trí điểm M. + Hai vòi nước cùng chảy vào một bể không có nước sau 4 giờ thì đầy bể. Người ta mở 2 vòi chảy trong 2 giờ, sau đó tắt vòi 1 đi, vòi 2 chảy tiếp trong 3 giờ nữa thì bể đầy. Hỏi mỗi vòi chảy một mình trong bao lâu thì đầy bể.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra HSG Toán 8 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đội tuyển học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho tam giác ABC nhọn AB < AC. Các đường cao AD, BE, CF cắt nhau tại H D BC E AC F. a) Chứng minh AF.AB = AE.AC. b) Qua D kẻ đường thẳng song song với EF cắt AB tại M, cắt CF tại N. Chứng minh FEH DEH và DM = DN. + Cho tam giác ABC nhọn (AB < AC). Các đường cao BM, CN cắt nhau tại I M AC N AB. Gọi E là trung điểm BC, IE cắt MN tại F. Chứng minh FM IM FN IN. + Tìm số nguyên dương n sao cho 2 An 4 14 7 là số chính phương.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Lộ - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND Thị Xã Nghĩa Lộ, tỉnh Yên Bái. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Lộ – Yên Bái : + Cho hình bình hành ABCD trong đó có A > 90° và AB > BC. Qua C dựng đường thẳng vuông góc với BC rồi lấy các điểm M và N sao cho CM = CN = CB. Qua C dựng đường vuông góc với CD rồi lấy các điểm P và Q sao cho CP = CQ = CD (M và P ở trong cùng nửa mặt phẳng với D có bờ BC). Chứng minh: a) MPNQ là hình bình hành. b) AC vuông góc MP. + Tìm số nguyên n sao cho n3 – 2 chia hết cho n – 2. + Cho n là số nguyên tố. Hỏi n10 – 1 là số nguyên tố hay hợp số? Vì sao?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Thanh Hóa : + Giả sử đa thức f x chia cho x 1 dư 4; chia cho 2 x 1 dư 2 3 x. Hãy tìm dư trong phép chia f x cho 2. + Cho O là trung điểm của đoạn thẳng AB. Vẽ tia Ax By cùng phía đối với AB và vuông góc AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh OAC đồng dạng với DBO và 2 AB AC BD. b) Kẻ OM vuông góc CD tại M. Tia BM cắt tia Ax tại I. Chứng minh AC CM CI 2) Cho ABC (AB AC) trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB AC lần lượt ở D và E. Chứng minh rằng 3 AB AC AD AE. + Một hộp đựng 20 quả bóng trong đó có 4 quả màu xanh, 5 quả màu trắng và 6 quả màu vàng (các quả còn lại khác màu nhau). Lấy ngẫu nhiên từ hộp ra 2 quả, tính xác suất để lấy được 2 quả cùng màu?