Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 2021 trường chuyên Hà Nội Amsterdam

Thứ Tư ngày 11 tháng 11 năm 2020, trường THPT chuyên Hà Nội – Amsterdam, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 9 năm học 2020 – 2021. Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Một chiếc thang dài 7m dựa vào bức tường thẳng đứng, tạo với mặt đất một góc 50°. Nếu đẩy chân của chiếc thang đó gần về phía tường đến khi thang tạo với mặt đất góc 65° (xem hình vẽ), hỏi đầu thang ở trên tường đã dịch chuyển lên một đoạn là bao nhiêu? (kết quả các phép tính lấy hai chữ số sau dấu phẩy). + Cho tam giác ABC có BAC > 90°, đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC và CA lần lượt tại P, Q và R. Gọi M, N theo thứ tự là trung điểm của các cạnh CA, AB. Các đường thẳng MN, PQ cắt nhau ở D. a) Cho biết độ dài các cạnh AB, BC và CA của tam giác tương ứng bằng 4 cm, 7 cm và 5 cm, tính độ dài của đoạn AP theo cm. b) Chứng minh các tam giác NDP và MCD là các tam giác cân. c) Chứng minh rằng các điểm D, I, C thẳng hàng. d) Gọi H là chân đường vuông góc kẻ từ Q đến PR. Chứng minh PHB = CHR. + Cho a, b là các số thực trái dấu thỏa mãn a^2 >= ab + 2b^2. Tìm giá trị lớn nhất của biểu thức P = (a^2 + 2b^2)/ab.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng định kì môn Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 74° và bóng của tháp trên mặt đất lúc đó là 86m (làm tròn kết quả tới hàng đơn vị). + Cho hàm số bậc nhất: y = (m + 1)x + 3 (d) với m khác -1. a) Vẽ đồ thị hàm số tại m = 1. b) Tìm m để đồ thị hàm số trên đi qua A(-1;-2). c) Tìm m để khoảng cách từ O(0;0) đến đường thẳng (d) bằng 3. + Cho nửa đường tròn (O), đường kính AB. Gọi C là điểm bất kì trên nửa đường tròn (O) (C khác A, C khác B). Từ C vẽ tia Ox là tiếp tuyến với nửa đường tròn (O). Từ O vẽ đường thẳng vuông góc với dây AC cắt tia Ox tại K. 1) Chứng minh KA là tiếp tuyến của nửa đường tròn (O). 2) Chứng minh bốn điểm K, A, O, C cùng thuộc một đường tròn. 3) Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C. I là trung điểm của CH. Gọi E là giao điểm của HD và BI. Chứng minh: HE.HD =HC2.
Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 9 năm học 2022 – 2023 trường THCS Cầu Diễn, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày phải làm được 18 sản phẩm. Nhưng thực tế do cải tiến kĩ thuật, mỗi ngày tổ đã làm được thêm 4 sản phẩm nên đã hoàn thành công việc trước 3 ngày và còn vượt mức 14 sản phẩm. Tính số sản phẩm tổ đó phải làm theo kế hoạch. + Cho tam giác MNP vuông tại M có đường cao MH; HN = 9cm; HP = 16cm. a) Tính: MN; MP; MH? b) Gọi I, K lần lượt là hình chiếu vuông góc của H lên MN, MP. Tính IK? c) Tính diện tích tứ giác NIKP? + Cho các số thực dương a, b thỏa mãn: ab > 202la + 2022b. Chứng minh bắt đẳng thức: a + b > (2021 + 2022)^2.
Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 28 tháng 09 năm 2022. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một ôtô đi từ thành phố Hà Nội lúc 8 giờ sáng, dự định đến thành phố Hải Phòng vào lúc 10 giờ 30 phút sáng cùng ngày. Nhưng mỗi giờ ôtô đã đi chậm hơn so với dự định là 10 km nên 11 giờ 20 phút xe mới tới Hải Phòng. Tính chiều dài quãng đường Hà Nội — Hải Phòng. + Tính chiều cao của cây trong hình bên, biết rằng người đo đứng cách cây 2,25m và khoảng cách từ mắt người đo đến mặt đất là 1,5m. + Cho tam giác ABC vuông tại A, vẽ đường cao AH. Qua H kẻ các đường thẳng vuông góc với AB và AC lần lượt tại D và E. 1) Chứng minh tứ giác ADHE là hình chữ nhật và AD.AB = AE.AC 2) Kẻ AI vuông góc với DE (I thuộc DE), AI cắt BC tại M. Chứng minh tam giác ABC đồng dạng tam giác AED và M là trung điểm của BC. 3) Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác ADHE đạt giá trị lớn nhất.
Đề khảo sát Toán 9 đầu năm học 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 29 tháng 09 năm 2022. Trích dẫn Đề khảo sát Toán 9 đầu năm học 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Mặt cắt của một ngôi nhà có phần mái có dạng tam giác ABC cân tại A. Biết CH = 4,5m và độ dốc của mái là C = 25°. Tính chiều cao AH của mái nhà (đơn vị: mét, làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC vuông tại A có AM là đường cao. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ điểm H đến các đường thẳng AB và AC. 1) Giả sử AB = 6 cm, BC = 10 cm. Tính độ dài các đoạn thẳng BH, AH. 2) Chứng minh rằng AE.AB = AF.AC và cos ABF = AC/BC. 3) Gọi O là giao điểm của AH và EF. Trên tia đối của tia AH lấy điểm M, kẻ BD vuông góc với CM tại D. Biết rằng SABC. Chứng minh ba điểm B, O, D thẳng hàng. + Cho các số thực x, y, z >= 0 thỏa mãn x + y + z = 19 và x + y + z = 5. Tìm giá trị lớn nhất của x.