Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm thể tích khối chóp - Trần Đình Cư

Tài liệu bài tập trắc nghiệm thể tích khối chóp do thầy Trần Đình Cư biên soạn và gửi tặng các em học sinh nhân dịp Giáng sinh 2016. Tài liệu được phân thành 5 dạng: Dạng 1. Khối chóp có cạnh bên vuông góc đáy Một số chú ý khi giải toán: + Một hình chóp có một cạnh bên vuông góc với đáy thì cạnh bên đó chính là đường cao. + Một hình chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì cạnh bên là giao tuyến của hai mặt đó vuông góc với đáy. Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy Dạng 3. Khối chóp có mặt bên vuông góc với đáy  Để xác định đường cao hình chóp ta vận dụng định lí sau: Nếu (α) ⊥ (β), (α) ∩ (β) = d, a ⊂ (α), a ⊥ d thi a ⊥ (β). Dạng 4. Khối chóp đều 1. Định nghĩa: Một hình chóp được gọi là hình chóp đều nếu đáy của nó là một đa giác đều và các cạnh bên bằng nhau 2. Kết quả: Trong hình chóp đều: + Đường cao hình chóp qua tâm của đa giác đáy. + Các cạnh bên tạo với đáy các góc bằng nhau. + Các mặt bên tạo với đáy các góc bằng nhau. [ads] Chú ý : + Đề bài cho hình chóp tam giác đều (tứ giác đều) ta hiểu là hình chóp đều. + Hình chóp tam giác đều khác với hình chóp có đáy là đa giác đều vì hình chóp tam giác đều thì bản thân nó có đáy là tam giác đều và các cạnh bên bằng nhau, nói một cách khác, hình chóp tam giác đều thì suy ra hình chóp có đáy là tam giác đều nhưng điều ngược lại là không đúng. + Hình chóp tứ giác đều là hình chóp đều có đáy là hình vuông. Dạng 5. Tỉ lệ thể tích Việc tính thể tích của một khối chóp thường học sinh giải bị nhiều sai sót. Tuy nhiên trong các đề thi lại yêu cầu học sinh tính thể tích của một khối chóp “nhỏ” của khối chóp đã cho. Khi đó học sinh có thể thực hiện các cách sau: Cách 1: + Xác định đa giác đáy. + Xác định đường cao ( phải chứng minh đường cao vuông gới với mặt phẳng đáy). + Tính thể tích khối chóp theo công thức. Cách 2 + Xác định đa giác đáy. + Tính các tỷ số độ dài của đường cao (nếu cùng đa giác đáy) hoặc diện tích đáy (nếu cùng đường cao) của khối chóp “nhỏ” và khối chóp đã cho và kết luận thể tích khối cần tìm bằng k lần thể tích khối đã cho. Cách 3: Dùng tỷ số thể tích (Chỉ áp dụng cho khối chóp (tứ diện)). Hai khối chóp S.MNK và S.ABC có chung đỉnh S và góc ở đỉnh S. Ta có : VS.MNK/VS.ABC = SM/SA.SN/SB.SK/SC

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng Đặng Việt Đông
Nội dung Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng Đặng Việt Đông Bản PDF - Nội dung bài viết Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng Đặng Việt Đông Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng Đặng Việt Đông Cuốn sách "Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng" của Đặng Việt Đông bao gồm 50 trang, với 151 câu hỏi trắc nghiệm và câu trả lời chi tiết đầy đủ. Một ví dụ minh họa từ sách là bài toán về việc đặt một viên gạch hình lập phương vào chiếu phễu hình nón chứa nước. Bài toán đặt ra câu hỏi về việc tính toán thể tích nước còn lại trong phễu sau khi đặt viên gạch vào đúng vị trí. Ngoài ra, sách cũng đưa ra các bài tập thực tế như tính toán độ cao mà một tên lửa tự chế bay đến sau một thời gian nhất định, hay tính toán cạnh của hộp chứa hàng để có diện tích bề mặt nhỏ nhất. Cuốn sách không chỉ cung cấp kiến thức lý thuyết mà còn giúp độc giả rèn luyện kỹ năng giải bài tập toán ứng dụng một cách linh hoạt và logic.
385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 Hứa Lâm Phong
Nội dung 385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 Hứa Lâm Phong Bản PDF - Nội dung bài viết 385 Bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 của Hứa Lâm Phong: Sản phẩm độc đáo giúp bạn ôn luyện hiệu quả 385 Bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 của Hứa Lâm Phong: Sản phẩm độc đáo giúp bạn ôn luyện hiệu quả Tài liệu này bao gồm 64 trang với tổng cộng 385 bài tập trắc nghiệm môn Toán, được biên soạn bởi thầy Hứa Lâm Phong dành cho các bạn ôn thi THPT Quốc gia 2017. Với sự tỉ mỉ và chuyên nghiệp của thầy Phong, bạn sẽ được tiếp cận với những câu hỏi có cấu trúc giống với đề thi thật, giúp bạn nắm vững kiến thức và rèn luyện kỹ năng giải bài toán một cách linh hoạt và nhanh nhẹn.