Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Kon Tum

Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Kon Tum Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Kon Tum; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Kon Tum : + Một nhóm gồm 9 học sinh một lớp trong đó có ba bạn Việt, Nam và Hùng đi dự đại hội Đoàn trường, ban tổ chức sắp xếp ngẫu nhiên 9 học sinh này ngồi vào một dãy ghế được đánh số từ 1 đến 9. Tính xác suất để số ghế của bạn Hùng bằng trung bình cộng số ghế của hai bạn Việt và Nam. + Biết mặt phẳng (ABC) vuông góc với mặt phẳng (ABD). Chứng minh rằng cos A.cos B = cos C với A, B, C là ký hiệu ba góc tương ứng với các đỉnh A, B, C của tam giác ABC. + Cho hàm số f(x) = -x4 + 2mx2 – m2 – 1. Tìm m để đồ thị hàm số f(x) có ba điểm cực trị và ba điểm đó cùng gốc tọa độ O lập thành tứ giác nội tiếp đường tròn.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD ĐT Đồng Tháp
Nội dung Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD ĐT Đồng Tháp Bản PDF Ngày 28 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán dự thi cấp Quốc gia năm 2021. Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp : + Xét số T = 3^n – 2^n, trong đó n là số nguyên dương, n >= 2. Chứng minh rằng: a) Không tồn tại n để T là bình phương của một số nguyên tố. b) Nếu T là lập phương của một số nguyên tố thì n là một số nguyên tố. + Với mỗi m thuộc N* ta kí hiệu: a(2m) = (m!)^2, a(2m + 1) = (m!).((m + 1)!). Cho đa thức p(x) hệ số nguyên, có bậc lớn hơn hoặc bằng k (k thuộc N*) và có ít nhất k nghiệm nguyên phân biệt. Xét số nguyên n (n khác 0) sao cho đa thức q(x) = p(x) – n có ít nhất một nghiệm nguyên. Chứng minh rằng |n| >= a(k). + Cho tam giác ABC, đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB tại D, E, F. 1. Gọi S là giao điểm của EF với BC. Chứng minh SI vuông góc với AD. 2. Đường thẳng d thay đổi, đi qua S và cắt đường tròn (I) tại hai điểm phân biệt M, N. Các tiếp tuyến tại M, N của (I) cắt nhau tại T. Chứng minh T thuộc một đường thẳng cố định. 3. Gọi K là giao điểm của ME và NF, G là giao điểm của MC và NB. Chứng minh K và G cùng thuộc đường thẳng AD.
Đề chọn đội tuyển HSG Toán năm 2021 sở GD ĐT tỉnh Đồng Nai
Nội dung Đề chọn đội tuyển HSG Toán năm 2021 sở GD ĐT tỉnh Đồng Nai Bản PDF Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội dự tuyển thi học sinh giỏi Quốc gia năm 2021 môn Toán. Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai : + Cho tam giác ABC cân tại A, lấy điểm D thuộc cạnh AB khác A và B, gọi (O) là đường tròn ngoại tiếp tam giác BCD, tiếp tuyến của đường tròn (O) tại D cắt đường thẳng AC tại điểm E, vẽ tiếp tuyến EF của đường tròn (O) tại tiếp điểm F khác D. Gọi I là giao điểm của hai đường thẳng BF và CD, gọi K là giao điểm của hai đường thẳng AI và BC. Chứng minh BK = 2CK. + Một tổ gồm có 5 học sinh được phân công trực nhật 6 ngày trong tuần từ thứ hai đến thứ bảy thỏa mãn các điều kiện sau: Mỗi ngày đều có từ 1 đến nhiều nhất là 2 học sinh trực và trong cả tuần mỗi học sinh trực đúng 2 lần, mỗi lần trực 1 ngày. Tính số các cách phân công trực nhật của tổ thỏa mãn các điều kiện đã cho. + Cho dãy số (un) xác định bởi un+1 = un + 1/2021n với mọi n thuộc N*. Chứng minh rằng tồn tại số nguyên dương n sao cho un > 0.
Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre
Nội dung Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre Bản PDF Thứ Năm ngày 17 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho tam giác ABC nhọn có góc BAC = 30 độ. Hai đường phân giác trong và ngoài của góc ABC lần lượt cắt đường thẳng AC tại B1 và B2; hai đường phân giác trong và ngoài của góc ACB lần lượt cắt đường thẳng AB tại C1 và C2. Giả sử đường tròn đường kính B1B2 và đường tròn đường kính C1C2 cắt nhau tại một điểm P nằm bên trong tam giác ABC. Chứng minh rằng góc BPC = 90 độ. + Cho dãy số (un) được xác định bởi: u1 = 20; u2 = 30; u_n+2 = 3.u_n+1 – u_n với n thuộc N*. Tìm tất cả các số nguyên dương n sao cho 1 + 5.u_n.u_n+1 là một số chính phương. + Cho đa thức P(x;y) không phải là đa thức hằng, thỏa mãn: P(x;y).P(z;t) = P(xz + yt;xt + yz) với mọi x, y, z, t thuộc R. Chứng minh rằng: P(x;y) chia hết cho ít nhất một trong hai đa thức Q(x;y) = x + y; H(x;y) = x – y.
Đề chọn học sinh giỏi Toán năm 2020 2021 trường THPT chuyên Bến Tre
Nội dung Đề chọn học sinh giỏi Toán năm 2020 2021 trường THPT chuyên Bến Tre Bản PDF Đề chọn học sinh giỏi Toán năm 2020 – 2021 trường THPT chuyên Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh thi HSG Toán cấp tỉnh năm 2020 – 2021 trường THPT chuyên Bến Tre : + Vé xe buýt có dạng abcdef với a, b, c, d, e, f thuộc {0; 1; 2; …; 9}. Một vé như trên thỏa mãn điều kiện a + b + c = d + e + f được gọi là vé hạnh phúc. Tính số vé hạnh phúc. + Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B. Các tiếp tuyến của (O1) tại A, B cắt nhau tại O. Gọi I là điểm trên đường tròn (O1) nhưng ngoài đường tròn (O2). Các đường thẳng IA, IB cắt đường tròn (O2) lần lượt tại C, D. Gọi M là trung điểm của đoạn thẳng CD. Chứng minh rằng: a) Các tam giác IAB và IDC đồng dạng với nhau. b) I, M, O thẳng hàng. + Cho hàm f: R → R thỏa mãn điều kiện: f(f(x) + 2f(y)) = f(x) + y + f(y) với mọi x, y thuộc R (1). a) Chứng minh f là đơn ánh. b) Tìm tất cả các hàm số thỏa mãn (1).