Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 1 ôn thi THPTQG 2019 2020 trường Đội Cấn Vĩnh Phúc

Nguồn: onluyen.vn

Đọc Sách

Đề thi KSCL Toán 12 năm 2019 - 2020 trường THPT Bình Phú - Bình Dương
Thứ Ba ngày 23 tháng 05 năm 2020, trường THPT Bình Phú, Thủ Dầu Một, Bình Dương tổ chức kỳ thi khảo sát chất lượng môn Toán học sinh khối 12 năm học 2019 – 2020, đây là bước chuẩn bị quan trọng trong quá trình hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trong bài viết này, nhóm tác giả Lê Phúc Lữ và Nguyễn Thế Bình sẽ giải và phân tích chi tiết các câu trong đề thi thử THPT QG của trường THPT Bình Phú (tỉnh Bình Dương), thi vào ngày 23/05/2020 vừa qua. Đề này gần đây cũng được nhiều thầy cô đánh giá rằng chất lượng không ổn vì hình thức cũng như phân bố các câu không hợp lý. Qua quá trình giải các bài, nhóm tác giả cũng công nhận điều này. Cụ thể là khá nhiều câu phát biểu không rõ, muốn thêm bớt các ý cho “mẹo mực” hơn nhưng thành ra tối nghĩa, không ít câu bị sai đề; thậm chí đưa một bài Vật lý rất khó vào vị trí câu nhận biết của đề. Tuy nhiên, cũng không thể không kể đến một số ý tưởng độc và lạ, cách đặt vấn đề thú vị và mới mẻ ở nhiều câu; có thể giúp các bạn thí sinh có mục tiêu 8+, 9+ có dịp thử thách thêm. Đó là các lý do nhóm tác giả thực hiện tài liệu này, và nhóm cũng chủ động điều chỉnh các câu bị sai sót, có vấn đề theo hướng hợp lý nhất có thể. Mong rằng tài liệu này ít nhiều cũng sẽ có giá trị cho các bạn học sinh chuẩn bị tham gia kỳ thi THPT QG 2020 sắp tới.
Đề khảo sát chất lượng Toán 12 lần 2 năm 2019 - 2020 trường THPT chuyên Hưng Yên
Ngày … tháng 05 năm 2020, trường THPT chuyên Hưng Yên, tỉnh Hưng Yên tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thi thứ hai, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 lần 2 năm 2019 – 2020 trường THPT chuyên Hưng Yên mã đề 357 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát chất lượng Toán 12 lần 2 năm 2019 – 2020 trường THPT chuyên Hưng Yên : + Một người muốn gửi tiền vào ngân hàng để đến ngày 22/02/2020 rút được khoản tiền là 50.000.000 đồng. Lãi suất ngân hàng là 0,55% / tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi vào ngày 22/3/2018 người đó phải gửi ngân hàng số tiền là bao nhiêu để đáp ứng nhu cầu trên, nếu lãi suất không thay đổi trong thời gian người đó gửi tiền? (làm tròn đến hàng nghìn). [ads] + Cho hàm số y = f(x) có đạo hàm trên R. Gọi d1, d2 lần lượt là tiếp tuyến của đồ thị hàm số y = f(x) và y = xf(2x – 1) tại điểm có hoành độ bằng 1. Biết hai đường thẳng d1, d2 vuông góc với nhau, khẳng định nào sau đây đúng? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 1. Mặt bên (SAC) là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA = SC = 3/2. Gọi D là điểm đối xứng với B qua C. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABD.
Đề thi KSCL Toán 12 lần 3 năm 2019 - 2020 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán 12 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 068 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho phương trình (log3 9x)^2 – (m + 5)log3 x + 3m – 10 = 0 (với m là tham số thực). Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc [1;81] là? + Một cái mũ bằng vải của nhà ảo thuật với kích thước như hình vẽ. Hãy tính tổng diện tích vải cần có để làm nên cái mũ đó (không tính viền, mép, phần thừa). + Một hộp đựng 8 viên bi đỏ được đánh số từ 1 đến 8, 6 viên bi xanh được đánh số từ 1 đến 6. Hỏi có bao nhiêu cách chọn 2 viên bi từ hộp đó sao cho 2 viên bi khác màu và khác số. [ads] + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a, tâm O. Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với O. Biết tam giác AA’C vuông cân tại A’. Tính khoảng cách h từ điểm D đến mặt phẳng (ABB’A’). + Diện tích phần hình phẳng được gạch chéo trong hình là giới hạn bởi đồ thị hai hàm số y = x^3 – x và y = x^3 + x^2 – x – 1 xác định bởi công thức S bằng tích phân từ -1 đến 1 của ax^3 + bx^2 + cx + d. Giá trị của 2020a + b + c + 2019d bằng?
Đề thi KSCL Toán 12 năm 2019 - 2020 trường chuyên Lê Hồng Phong - Nam Định
Thứ Hai ngày 25 tháng 05 năm 2020, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020. Đề thi KSCL Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định bám sát cấu trúc đề tham khảo tốt nghiệp THPT Quốc gia môn Toán của Bộ GD&ĐT, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định : + Cho hình hộp ABCD. A’B’C’D’ có đáy ABCD là hình thoi tâm O và cạnh bằng a, góc BAC = 60 độ. Gọi I, J lần lượt là tâm của các mặt bên ABB’A’, CDD’C’. Biết AI = a√7/2, AA’ = 2a và góc giữa hai mặt phẳng (ABB’A’), (A’B’C’D’) bằng 60 độ. Tính theo a thể tích của khối tứ diện AOIJ. + Cho hình nón có đỉnh S và đáy là hình tròn tâm O. Biết rằng chiều cao của nón bằng a và bán kính đáy nón bằng 2a. Một mặt phẳng (P) đi qua đỉnh S và cắt đường tròn đáy nón tại hai điểm A, B mà AB = 2a√3. Hãy tính theo a diện tích mặt cầu ngoại tiếp của khối tứ diện SOAB. [ads] + Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C. + Cho hình tứ diện đều ABCD có cạnh bằng a. Gọi M là trung điểm của cạnh AD (tham khảo hình vẽ dưới). Tính khoảng cách giữa hai đường thẳng AB và CM theo a. + Cho tam giác đều ABC có diện tích bằng s1 và AH là đường cao. Quay tam giác ABC quanh đường thẳng AH ta thu được hình nón có diện tích xung quanh bằng s2. Tính s1/s2.