Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi D là hình chiếu của I trên BC, AD cắt lại (O) tại G. Lấy E và F lần lượt là điểm chính giữa của cung nhỏ BC và cung lớn BC. Hai đường thẳng ID và FG cắt nhau tại điểm H. Gọi M là trung điểm cạnh BC. a) Chứng minh rằng điểm H nằm trên đường tròn ngoại tiếp tam giác IBC. b) Gọi P là điểm trên đường thẳng ID sao cho MP = MB và K trên đường thẳng BC sao cho KP vuông góc PM, KI cắt FG tại N và MN cắt AI tại J. Chứng minh E là trung điểm của IJ. + Tìm tất cả các bộ số nguyên dương (a; b; c) thỏa mãn: a^b + 1 | (a + 1)^c. + Bạn A có một số chiếc thẻ thuộc ba loại thẻ: thẻ hai mặt đỏ; thẻ một mặt vàng, một mặt đỏ; thẻ hai mặt vàng. Bạn ấy không phân biệt được màu sắc nên cần một máy scan để quét. Tuy nhiên máy này cũng chỉ có thể phân biệt được tất cả các mặt thẻ úp xuống đưa vào trong máy có đều là màu vàng hay không. Nghĩa là nếu tất cả các mặt úp đều vàng nó sẽ báo vàng, còn chỉ cần có một mặt đỏ trong số đó thì nó báo không vàng. Mỗi lần bạn ấy có thể chọn bao nhiêu thẻ để đưa vào cũng được. a) Chứng minh rằng nếu A có n thẻ gồm một thẻ hai mặt đỏ và n – 1 thẻ hai mặt vàng thì A có thể sử dụng máy để tìm ra thẻ hai mặt đỏ sau nhiều nhất là [log2n] bước. b) Xét dãy số Fibonacci (F) với F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn với n >= 1. Với n >= 4, giả sử bạn A có Fn thẻ gồm một thẻ hai mặt đỏ và một thẻ một mặt vàng, một mặt đỏ, còn lại là các thẻ hai mặt vàng. Hỏi bạn ấy có thuật toán nào để có thể tìm ra thẻ hai mặt đỏ bằng cách sử dụng máy nhiều nhất n lần hay không?

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh gồm 2 bài thi diễn ra trong hai ngày 20 và 21 tháng 9 năm 2018, đề thứ nhất gồm 4 bài toán tự luận, đề thứ hai gồm 4 bài toán tự luận, mỗi bài thi diễn ra trong thời gian 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh : + Cho một khung sắt có hình dạng là một tứ diện đều mỗi cạnh có độ dài 1 mét. Một con bọ ban đầu ở tại một đỉnh của tứ diện, bắt đầu di chuyển liên tục trên các cạnh của tứ diện theo quy tắc: tại mỗi đỉnh nó đến, nó sẽ chọn một trong ba cạnh tại đỉnh đó và di chuyển theo cạnh đó đến đỉnh tiếp theo. Với mỗi số nguyên dương n, tìm số cách đi của con bọ để nó trở lại đúng đỉnh ban đầu sau khi đã đi được đúng n mét. [ads] + Cô giáo có tất cả 2020 viên kẹo gồm 20 loại kẹo khác nhau, mỗi loại ít nhất có 2 viên kẹo. Cô chia hết kẹo cho các học sinh của mình, mỗi người một số viên kẹo và không có học sinh nào nhận được nhiều hơn một viên kẹo ở một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kì so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kì đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M. Với giả thiết tương tự nhưng thay 20 loại kẹo khác nhau bởi 19 loại kẹo khác nhau, hãy tìm giá trị nhỏ nhất của M trong trường hợp tương ứng này. + Cho k là số tự nhiên lớn hơn 1. Xét dãy số (an) xác định bởi: a0 = 0, a1 = 1 và an+1 = kan + an-1 với mọi n ∈ N*. Xác định tất cả các giá trị của k sao cho tồn tại các số tự nhiên m, n (với m ≠ n) và các số nguyên dương p, q thỏa mãn điều kiện: am + kap = an + kaq.
Đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Phú Thọ
Nội dung Đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Phú Thọ Bản PDF Đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Phú Thọ gồm 2 đề thi dành cho 2 ngày thi: ngày 14/09/2018 và ngày 15/09/2018, ngày thi thứ nhất gồm 4 bài toán, ngày thi thứ 2 gồm 3 bài toán, mỗi đề học sinh giải trong thời gian 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Phú Thọ : + Cho tứ giác nội tiếp ABCD có hai đường chéo cắt nhau tại P. Đường tròn ngoại tiếp các tam giác APB, CPD cắt cạnh BC theo thứ tự tại E, F. Gọi I, J lần lượt là tâm đường tròn nội tiếp các tam giác ABE, CDF, hai đoạn thẳng BJ và CI cắt nhau tại Q. Đường tròn ngoại tiếp tam giác AIB cắt đoạn thẳng BD tại M. Đường tròn ngoại tiếp tam giác DJC cắt đoạn thẳng AC tại N. Chứng minh BIJC là tứ giác nội tiếp. Chứng minh ba đường thẳng IM, JN, PQ đồng quy. [ads] + Chứng minh rằng: Tồn tại 2018 số nguyên dương liên tiếp là hợp số. Tồn tại 2018 số nguyên dương liên tiếp chứa đúng 2 số nguyên tố. + Một bảng ô vuông ABCD kích thước 2018 x 2018 gồm 2018^2 ô vuông đơn vị, mỗi ô vuông đơn vị được điền bởi một trong ba số -1, 0,1. Một cách điền số được gọi là đối xứng nếu mỗi ô có tâm trên đường chéo AC được điền số -1 và mỗi cặp ô đối xứng qua AC được điền cùng một số 0 hoặc 1. Chứng minh rằng với một cách điền số đối xứng bất kì, luôn tồn tại hai hàng có các số trong mỗi ô vuông đơn vị lần lượt theo thứ tự từ trái sang phải là a1, a2, …, a2018 ở hàng thứ nhất, b1, b2, …, b2018 ở hàng thứ hai sao cho S = a1b1 + a2b2 + … + a2018b2018 là một số chẵn.
Đề thi chọn đội tuyển học sinh giỏi lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Bến Tre
Nội dung Đề thi chọn đội tuyển học sinh giỏi lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Bến Tre Bản PDF Nhằm tuyển chọn các em học sinh lớp 12 giỏi môn Toán để bồi dưỡng tham dự kỳ thi HSG Quốc gia năm học 2018 – 2019, sở Giáo dục và Đào tạo Bến Tre tiến hành tổ chức kỳ thi học sinh giỏi cấp tỉnh, đề được soạn theo hình thức tự luận với 4 bài toán, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Bến Tre : + Dịp hè năm học 2017 – 2018, hiệu trưởng trường A tổ chức cho 3n (n là số nguyên dương) học sinh tham gia cắm trại. Mỗi ngày, hiệu trưởng phân công 3 học sinh làm vệ sinh khu vực cắm trại. Khi đợt cắm trại kết thúc, hiệu trưởng nhận thấy rằng: với 2 học sinh bất kỳ có đúng một lần được phân công làm vệ sinh trong cùng một ngày. Khi n= 3, hãy tìm số cách sắp xếp học sinh thỏa yêu cầu trên. Chứng minh rằng n là số lẻ. + Cho tam giác ABC có góc A bằng 60 độ, AB > AC. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, H là giao điểm hai đường cao BE và CF (E ∈ AC, F ∈ AB). Trên các cạnh BH, HF lần lượt lấy các điểm M, N sao cho BM = CN. Tính giá trị của (MH + NH)/OH.
Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia lớp 12 môn Toán năm 2019 sở GD và ĐT Lạng Sơn
Nội dung Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia lớp 12 môn Toán năm 2019 sở GD và ĐT Lạng Sơn Bản PDF Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán lớp 12 năm 2019 sở GD và ĐT Lạng Sơn gồm 1 trang với 5 bài toán tự luận, thí sinh làm bài trong thời gian 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức ngày 24 tháng 08 năm 2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán lớp 12 năm 2019 sở GD và ĐT Lạng Sơn : + Trên mặt phẳng cho 2n^2 (n ≥ 2) đường thẳng sao cho không có hai đường nào song song và không có ba đường nào đồng quy. Các đường thẳng này chia mặt phẳng ra thành các miền rời nhau. Trong các miền đó, gọi F là tập tất cả các miền đa giác có diện tích hữu hạn. Chứng minh rằng có thể tô n đường thẳng trong số 2n^2 đường thẳng đã cho bằng màu xanh sao cho không có miền nào trong tập F có tất cả các cạnh màu xanh. [ads] + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm các cung nhỏ BC, AD. Gọi I, J lần lượt là trung điểm của OM, ON. Gọi K là điểm đối xứng với O qua M. Chứng minh rằng tứ giác BJDK nội tiếp đường tròn. Gọi P, Q lần lượt là hình chiếu vuông góc của I lên AB, AC. Chứng minh rằng AK ⊥ PQ. + Cho đa thức P(x) có hệ số nguyên, bậc 2 và hệ số bậc 2 bằng 1 thỏa mãn tồn tại đa thức Q(x) có hệ số nguyên sao cho P(x).Q(x) là đa thức có tất cả các hệ số đều là ±1. Chứng minh rằng nếu đa thức P(x) có nghiệm thực x0 thì |x0| < 2. Tìm tất cả các đa thức P(x).