Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 11 thi TN THPT 2024 lần 1 trường THPT Ba Đình - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng môn Toán 11 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán 11 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Cho hình chóp S.ABCD có BC AD BC AD AB b 2 1. Tam giác SAD đều. Mặt phẳng (P) đi qua điểm M trên cạnh AB và song song với các đường thẳng SA và BC, đồng thời cắt CD, SC, SB theo thứ tự tại N, P, Q. Đặt AM x x b 0. Gọi S x là diện tích của tứ giác MNPQ. Khi đó S x lớn nhất bằng? + Cho tứ diện ABCD có M, N lần lượt là trung điểm của BC và CD. Gọi K là điểm tùy ý thuộc miền trong tam giác ABD. Giao tuyến của (KMN) và (ABD) có tính chất là: A. nằm trong mặt phẳng (ACD) B. Song song với BD C. Cắt cạnh BD D. Cắt cạnh AC. + Cho hàm số 2 y f x ax bx c a 0 có đồ thị như hình vẽ bên. Hỏi phương trình 2 a f cosx b f cosx c có bao nhiêu nghiệm trong khoảng 7 2 2 π π?

Nguồn: toanmath.com

Đọc Sách

Khảo sát kiến thức thi THPT Quốc gia năm học 2017 – 2018 lớp 11 môn Toán trường Triệu Sơn 3 – Thanh Hóa
Nội dung Khảo sát kiến thức thi THPT Quốc gia năm học 2017 – 2018 lớp 11 môn Toán trường Triệu Sơn 3 – Thanh Hóa Bản PDF Đề khảo sát kiến thức thi THPT Quốc gia năm học 2017 – 2018 môn Toán lớp 11 trường Triệu Sơn 3 – Thanh Hóa gồm 4 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Với dự kiến đề thi THPT Quốc gia môn Toán, bắt đầu từ năm 2018 trở đi không chỉ “đóng gói” trong nội dung chương trình Toán lớp 12, mà còn các kiến thức Toán lớp 11 và Toán lớp 10, thì các trường THPT đã thường xuyên tổ chức các kỳ
Đề khảo sát lớp 11 môn Toán năm học 2017 2018 trường THPT Quế Võ 2 Bắc Ninh
Nội dung Đề khảo sát lớp 11 môn Toán năm học 2017 2018 trường THPT Quế Võ 2 Bắc Ninh Bản PDF Đề khảo sát môn Toán lớp 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Hàn Thuyên Bắc Ninh
Nội dung Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Hàn Thuyên Bắc Ninh Bản PDF Đề kiểm tra chất lượng Toán lớp 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 2018 lớp 11 môn Toán trường THPT Đồng Đậu Vĩnh Phúc
Nội dung Đề khảo sát chất lượng lần 1 năm học 2017 2018 lớp 11 môn Toán trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán lớp 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.