Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 24 tháng 05 năm 2023. Đề thi bao gồm đáp án và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề khảo sát Toán lớp 9 năm 2022 - 2023 của phòng GD&ĐT Hoàn Kiếm - Hà Nội: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 12m và diện tích mảnh đất bằng 285m². Hãy tính chiều dài và chiều rộng của mảnh đất theo đơn vị mét? Một quả địa cầu hành chính có đường kính bằng 33cm. Tính diện tích bề mặt của quả địa cầu lấy pi = 3,14. Cho đường tròn O, R và một điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MA, MB với đường tròn O, R (A, B là các tiếp điểm). Vẽ đường kính AD, lấy I là trung điểm của đoạn thẳng MO, gọi C là hình chiếu vuông góc của I lên AO. Câu hỏi đề cập đến các chứng minh và tính chất của các hình học trong bài toán.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 9 THCS năm 2018 - 2019 sở GD và ĐT Thái Bình
Đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh giỏi Toán 9 khối THCS để thành lập đội tuyển tham dự kỳ thi học sinh giỏi Toán 9 cấp Quốc gia, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình : + Cho tam giác ABC vuông tại A, đường cao AH, gọi I, J, K lần lượt là tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Gọi giao điểm của các đường thẳng AJ, AK với cạnh BC lần lượt là E và F. a. Chứng minh: I là tâm đường tròn ngoại tiếp tam giác AEF. b. Chứng minh: đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. + Tìm tất cả các bộ số nguyên dương (x;y;z) sao cho (x + y√2019)(y + z√2019) là số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố. [ads] + Cho tam giác ABC có ba góc nhọn, vẽ các đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC. a. Chứng minh: nếu HG // BC thì tanB.tanC = 3. b. Chứng minh: tanA.tanB.tanC = tanA + tanB + tanC.
Đề thi HSG Toán 9 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề thi HSG Toán 9 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi chọn HSG Toán 9 năm 2018 - 2019 phòng GDĐT Con Cuông - Nghệ An
Đề thi chọn HSG Toán 9 năm 2018 – 2019 phòng GD&ĐT Con Cuông – Nghệ An gồm có 01 trang với 05 bài toán tự luận, học sinh làm bài trong 150 phút, cán bộ coi thi không giải thích gì thêm, thí sinh không được sử dụng máy tính cầm tay, đề thi có lời giải chi tiết kèm thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 năm 2018 – 2019 phòng GD&ĐT Con Cuông – Nghệ An : + Cho nửa đường tròn tâm O đường kính AB. Trên cùng nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H. a) Tính MH biết AH = 3cm, HB = 5cm. b) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M, I, H thẳng hàng. c) Vẽ đường tròn tâm (O’) nội tiếp tam giác AMB tiếp xúc AB ở K. Chứng minh diện tích S_ΔAMB = AK.KB. [ads] + Cho đường thẳng (d) có phương trình: (m + 1)x + (m – 2)y = 3 (d) (m là tham số). a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A (-1;-2). b) Tìm m để (d) cắt hai trục tọa độ và tạo thành tam giác có diện tích bằng 9. + Chứng minh rằng với mọi số nguyên n thì n^3 + 3n^2 + 2018n chia hết cho 6.
Đề thi học sinh giỏi cấp huyện Toán 9 năm 2018 - 2019 phòng GDĐT Hoài Nhơn - Bình Định
Đề thi học sinh giỏi cấp huyện Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoài Nhơn – Bình Định được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/12/2018 nhằm tuyển chọn các em học sinh lớp 9 giỏi môn Toán đang học tập tại các trường THCS trên địa bàn huyện Hoài Nhơn, tỉnh Bình Định, đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp huyện Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoài Nhơn – Bình Định : + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), gọi M là trung điểm của cạnh BC, H là trực tâm của tam giác ABC và K là hình chiếu vuông góc của A trên cạnh BC. Tính diện tích của tam giác ABC, biết OM = HK = KM/4 và AM = 30 cm. + Tìm các số nguyên dương có hai chữ số, biết số đó là bội của tích hai chữ số của chính số đó. + Chứng minh rằng số tự nhiên 1.2.3…2017.2018.(1 + 1/2 + 1/3 + … + 1/2017 + 1/2018) chia hết cho 2019.