Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 10 năm 2023 2024 trường THCS Nguyễn Trãi Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 10 năm 2023 2024 trường THCS Nguyễn Trãi Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán tháng 10 năm 2023-2024 trường THCS Nguyễn Trãi Hà Nội Đề khảo sát lớp 9 môn Toán tháng 10 năm 2023-2024 trường THCS Nguyễn Trãi Hà Nội Chào các thầy cô giáo và các em học sinh lớp 9! Dưới đây là đề kiểm tra khảo sát chất lượng môn Toán lớp 9 tháng 10 năm học 2023-2024 của trường THCS Nguyễn Trãi, Hà Nội. Kỳ thi sẽ diễn ra vào ngày 06 tháng 10 năm 2023. 1. Tượng đài "Ba mũi tên đồng" - tượng đài chiến thắng Ngọc Hồi cao 10 m. Tại một thời điểm trong ngày, bóng của tượng đài trên mặt đất dài 8 m. Hỏi lúc đó góc tạo bởi tia nắng mặt trời với mặt đất là bao nhiêu? (Làm tròn đến độ). 2. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Cho HB = 4cm; HC = 9cm. Tính AH và số đo ABC (làm tròn đến độ). b) Gọi D là hình chiếu của H trên AB; E là hình chiếu của H trên AC. Chứng minh: - Tứ giác ADHE là hình chữ nhật. - AD.AB + AE.AC = 2DE2. c) Chứng minh: HC2/AC2 + BD2/BH2 = 1. 3. Cho hai số thực dương x, y thỏa mãn: x + y <= 1. Tìm giá trị nhỏ nhất của biểu thức: M.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Kim Thành, tỉnh Hải Dương; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Kim Thành – Hải Dương : + Tìm tất cả các cặp số nguyên dương (x;y) sao cho x2 – 3y2 – 2xy – 2x + 14y = 11. Cho n là số nguyên dương thỏa mãn 12n2 + 1 là số nguyên. Chứng minh rằng: 212n2 + 1 + 2 là số chính phương. + Cho đường tròn (O) và đường thẳng d cắt đường tròn (O) tại hai điểm B, C (d không đi qua O). Trên tia đối của tia BC lấy điểm A (A nằm ngoài (O)). Kẻ AM và AN là các tiếp tuyến với đường tròn (O) tại M và N. Gọi I là trung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và O), BC cắt MN tại K. a) Chứng minh AK.AI = AM2. b) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh P là trung điểm của ME. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định (I khác A và D). Đường thẳng d đi qua I cắt các cạnh AB, AC lần lượt tại M, N. Xác định vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 9 vòng 1 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 vòng 1 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho các số thực a, b không âm thỏa mãn điều kiện 2a + 2b + ab = 4. Tính giá trị của biểu thức P. + Cho a, b, c là các số nguyên thỏa mãn a + b + c = c3 – 7c. Chứng minh rằng: a3 + b3 + c3 chia hết cho 6. + Cho tam giác ABC vuông tại A có đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB và AC. 1) Chứng minh: AE.EB + AF.FC = AH2 và BC.cos3B = BE. 2) Chứng minh: BE.CH + CF.BH = AH.BC. 3) Gọi M là trung điểm của BC. Từ A kẻ đường thẳng d vuông góc với AM tại A. Từ B kẻ tia Bx vuông góc với BC cắt đường thẳng d tại P. Chứng minh PC đi qua trung điểm của AH.
Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 07 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho x và y là các số nguyên dương thỏa mãn x3 + y và x + y3 cùng chia hết cho x2 + y2. Chứng minh rằng 2x + 2y là số chính phương. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. 1. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. 2. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. 3. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1. + Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử?
Đề học sinh giỏi Toán 9 vòng 2 năm 2022 - 2023 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 vòng 2 năm 2022 – 2023 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho hai số nguyên x y thỏa mãn 2 2 x y xy x y 1 2. Chứng minh rằng x và y là hai số chính phương liên tiếp. Tìm các cặp số tự nhiên x y thỏa mãn 6 x y y x 30. + Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE, CF cắt nhau tại H. Trên đoạn thẳng AD lấy điểm M sao cho 0 BMC 90. Gọi S S S 1 2 lần lượt là diện tích các tam giác BAC, BMC, BHC. a) Chứng minh rằng: S S 1 2 b) Gọi K P lần lượt là hình chiếu của D trên BE CF. Chứng minh rằng KP // EF. + Trên các cạnh BC, CA, AB của tam giác ABC lần lượt lấy các điểm M, N, P. Đặt S S 1 2 3 lần lượt là diện tích các tam giác ANP, BMP, CMN, ABC. Chứng minh rằng: 3 1 2 3 S S 64.