Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ

Nội dung Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ Bản PDF - Nội dung bài viết Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán lớp 8 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ. Đề thi được thiết kế với hình thức 40% trắc nghiệm khách quan và 60% tự luận. Thời gian làm bài là 120 phút, không tính thời gian giao đề. Đề thi đi kèm đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ: - Thí sinh chỉ cần chọn một đáp án đúng trong phần trắc nghiệm khách quan. Toán cấp huyện Phú Thọ, lớp 8, một bài toán được đưa ra như sau: Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm, hỏi độ dài IK là bao nhiêu? - Để lập đội tuyển năng khiếu bóng rổ, nhà trường quy định rằng mỗi thí sinh cần ném 10 quả bóng vào rổ. Mỗi quả bóng ném vào rổ sẽ được cộng 4 điểm, còn nếu ném ra ngoài sẽ bị trừ 2 điểm. Để được chọn vào đội tuyển, một học sinh cần ít nhất bao nhiêu quả bóng ném vào rổ? - Trong một câu hỏi khác, đề thi yêu cầu học sinh chứng minh một số khẳng định về tam giác nhọn ABC và mối liên hệ giữa các đường cao, đường trung tuyến, và tâm đường tròn ngoại tiếp tam giác. Đề thi Toán năm 2022-2023 của phòng GD ĐT Thanh Sơn Phú Thọ không chỉ đánh giá kiến thức mà còn khuyến khích học sinh phát triển kỹ năng logic, tư duy toán học và khả năng giải quyết vấn đề. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 cụm Trung học Cơ sở phòng Giáo dục và Đào tạo UBND huyện Vĩnh Lộc, tỉnh Thanh Hóa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Tìm đa thức P(x) thoả mãn: P(x) chia cho x + 3 dư 1; chia cho x – 4 dư 8; chia cho (x + 3)(x – 4) được thương là 3x và còn dư. + Tìm số tự nhiên có 9 chữ số: 1 2 312 31 2 3 A aa abbba trong đó 1 a 0 và 123 12 3 bbb aa a 2 và đồng thời A viết được dưới dạng 2 1 234 A p với 1234 pp là bốn số nguyên tố. + Cho tam giác ABC vuông tại A (AB AC) gọi AD là tia phân giác của góc BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC; E là giao điểm của BN và DM, F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF BC. b) Gọi H là giao điểm của BN và CM. Chứng minh ∆ANB đồng dạng với ∆NFA và H là trực tâm ∆AEF. c) Gọi P là điểm trên AN, Q là điểm trên AM sao cho AP = MQ. Tìm vị trí của P và Q để diện tích tứ giác MQPN đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Chương Mỹ – Hà Nội : + Giải phương trình: (4x − 5)2(2x − 3)(x − 1) = 9. Tìm các cặp số nguyên (x;y) thỏa mãn: 3×2 + 5y2 = 345. Tìm hệ số a, b để đa thức x5 – 6×2 + ax + b chia hết cho đa thức x2 – 3x + 2. + Cho hình chữ nhật ABCD, gọi H là hình chiếu của D trên AC. Gọi M, N, K lần lượt là trung điểm của BC, AH, DH. 1) Tứ giác MNKC là hình gì? Vì sao? 2) Chứng minh rằng: DH2 = HA.HC. 3) Chứng minh rằng: AND đồng dạng với DKC. 4) Chứng minh rằng: DN vuông góc NM. + Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Đa thức f x chia cho x + 1 dư 4, chia cho x2 + 1 dư 2 3 x. Tìm phần dư khi chia đa thức f x cho 2 x x 1 1. + Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn 2 n 4 và 2 n 16 là các số nguyên tố thì n chia hết cho 5. + Cho tam giác ABC nhọn có AB < AC. Các đường cao AD, BE, CF cắt nhau tại điểm H. 1) Chứng minh: 2 AH BH CH AD BE CF. 2) Gọi M là trung điểm của AC. Qua H kẻ đường thẳng vuông góc với HM, đường thẳng này cắt AB, BC lần lượt tại P, Q. Chứng minh AM.BQ = AH.BH. 3) Chứng minh MPQ là tam giác cân.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình : + Một vật thể chuyển động từ A đến B theo cách sau: đi được 4m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây … Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2m / giây. Tính khoảng cách từ A đến B. + Cho hình vuông ABCD. Qua A kẻ một đường thẳng cắt đoạn thẳng BC tại P (P khác B, P khác C) và cắt tia DC tại Q. Kẻ đường thẳng vuông góc với AP tại A, đường thẳng này cắt tia CB tại R và cắt tia CD tại S. Tia SP cắt QR tại H. Gọi M; N lần lượt là trung điểm của QR và SP. Chứng minh rằng: a) AQR và APS là các tam giác vuông cân. b) Tứ giác AMHN là hình chữ nhật. c) MN là đường trung trực của đoạn thẳng AC. + Cho tam giác ABC có góc ABC = 30°. Dựng bên ngoài tam giác ABC tam giác ACD vuông cân tại D. Chứng minh rằng 2BD2 = BA2 + BC2 + BA.BC.