Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 - 2024 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 10 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 năm 2023 – 2024 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Đường cao tốc Bắc – Nam đoạn từ huyện Thạch Hà đến Đèo Ngang cách nhau 80km. Người ta tính rằng nếu lái xe ô tô đi trên đoạn đường cao tốc đó với vận tốc lớn hơn khi lái xe đi trên đoạn đường thường (có độ dài củng 80km) là 60km/h thì thời gian rút ngắn được 1 giờ 12 phút. Tính vận tốc của xe ô tô đi trên cao tốc. + Cho tam giác KMN vuông tại K có đường cao KA, phân giác KB (A và B thuộc cạnh MN). Biết KM 12cm và 3 tan N 4. Tính KN, KA và diện tích tam giác KMB. + Cho tam giác ABC nhọn nội tiếp đường tròng (O). Kẻ đường kính AK, kẻ CD vuông góc với AB và CE vuông góc với AK (D AB E AK). a. Chứng minh tứ giác ADEC là tứ giác nội tiếp đường tròn. b. Gọi M là trung điểm của BC. Chứng minh hai tam giác ADC và OMC đồng dạng và 3 điểm D, M, E thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai (đề thi dành cho thí sinh thi vào trường THPT chuyên Lào Cai); kỳ thi được diễn ra vào thứ Bảy ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Trung tâm toán học Pytago). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Lào Cai : + Gọi S là tập hợp các số tự nhiên có 4 chữ số. Lấy ngẫu nhiên 1 số từ tập S. Tính xác suất để số lấy được là số chính phương không vượt quá 2022. + Theo kế hoạch một công nhân phải làm 54 sản phẩm trong một khoảng thời gian dự định. Do yêu cầu đột xuất, người đó phải làm 68 sản phẩm nên mỗi giờ người đó đã làm tăng thêm 3 sản phẩm vì thế công việc hoàn thành sớm hơn so với dự định là 20 phút. Hỏi theo dự định mỗi giờ người đó phải làm bao nhiêu sản phẩm, biết rằng mỗi giờ người đó làm được không quá 12 sản phẩm. + Cho tam giác nhọn ABC không cân (AB < AC) nội tiếp đường tròn (O), ba đường cao AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB) của tam giác ABC cắt nhau tại H. Gọi I, M lần lượt là trung điểm của AH và BC. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm K (K khác A). a) Chứng minh rằng tứ giác DMEF nội tiếp. b) Chứng minh rằng tứ giác IOMK là hình thang cân. c) Chứng minh rằng KF.HE = KE.HF. d) Tiếp tuyến tại A và K của đường tròn ngoại tiếp tam giác AEF cắt nhau tại T. Chứng minh rằng TM, AH, EF đồng quy.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Đà Nẵng (đề thi dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, thành phố Đà Nẵng); kỳ thi được diễn ra vào sáng Chủ Nhật ngày 12 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Đà Nẵng : + Cho phương trình x2 – 2x + k2 – 3k – 9 = 0 với k là tham số. Khi phương trình đã cho có hai nghiệm x1 và x2, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Q. + Cho đường tròn (O) bán kính R và điểm A nằm trên đường tròn. Đường tròn (A;R) cắt đường tròn (O) tại hai điểm B và C. Gọi M là trung điểm của AB, tia MO cắt (O) tại điểm D. Tia BC cắt AD tại E và cắt (O) tại điểm thứ hai là F. Tính độ dài đoạn thẳng DE và diện tích tứ giác ACFE theo R. + Cho tam giác ABC nhọn có AB < AC, trực tâm H và nội tiếp đường tròn (O). Gọi M là trung điểm của BC và K là hình chiếu của H trên AM. Tia AM cắt đường tròn ngoại tiếp tam giác BKC tại điểm thứ hai là N. Chứng minh rằng tứ giác ABNC là hình bình hành.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào sáng Chủ Nhật ngày 12 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Giá bán một cái bánh cùng loại ở hai cửa hàng A và B đều là 15 000 đồng, nhưng mỗi cửa hàng áp dụng hình thức khuyến mãi khác nhau. Cửa hàng A: đối với 3 cái bánh đầu tiên, giá mỗi cái là 15 000 đồng và từ cái bánh thứ tư trở đi khách hàng chỉ phải trả 75% giá bán. Cửa hàng B: cứ mua 3 cái bánh thì được tặng thêm 1 cái bánh cùng loại. Bạn Hằng cần đúng 13 cái bánh để tổ chức sinh nhật thì bạn ấy nên mua bánh ở cửa hàng nào để tiết kiệm và tiết kiệm được bao nhiêu tiền so với cửa hàng kia? + Một vận động viên khi leo núi nhận thấy rằng càng lên cao thì nhiệt độ không khí càng giảm. Mối liên hệ giữa nhiệt độ không khí T và độ cao h (so với chân núi) được cho bởi hàm số T = a.h + b có đồ thị như hình vẽ bên (nhiệt độ T tính theo °C và độ cao tính theo mét). Tại chân núi, người đó đo được nhiệt độ không khí là 23°C và trung bình cứ lên cao 100 m thì nhiệt độ giảm 0,6°C. a) Xác định a và b trong công thức trên. b) Bạn Minh đang leo núi và dùng nhiệt kế đo được nhiệt độ không khí tại vị trí dừng chân là 15,8°C. Hỏi bạn Minh đang ở độ cao bao nhiêu mét so với chân núi? + Đại hội Thể thao Đông Nam Á – SEA Games (South East Asian Games) là sự kiện thể thao được tổ chức 2 năm một lần với sự tham gia của các vận động viên ở trong khu vực Đông Nam Á. Việt Nam là chủ nhà của SEA Games 31 diễn ra từ ngày 12/5/2022 đến ngày 23/5/2022. Ở môn bóng đá nam, một bảng đấu gồm có 5 đội A, B, C, D, E thi đấu theo thể thức vòng tròn một lượt (mỗi đội thi đấu đúng một trận với các đội còn lại). Trong mỗi trận đấu, đội thắng được 3 điểm đội hòa được 1 điểm và đội thua được 0 điểm. a) Hỏi có tất cả bao nhiêu trận đấu đã diễn ra ở bảng đấu trên? b) Khi kết thúc bảng đấu, các đội A, B, C, D, E lần lượt có điểm số là 10, 9, 6, 4, 0. Hỏi có bao nhiêu trận hòa và cho biết đó là trận hòa giữa các đội nào (nếu có)?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Tây Ninh : + Cho tam giác điều ABC cạnh a, đường cao AH (H thuộc BC), M là điểm bất kỳ trên cạnh BC, vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Gọi O là trung điểm của AM. a) Tứ giác OEHF là hình gì? b) Tìm giá trị nhỏ nhất của diện tích tứ giác OEHF theo a khi M di động trên cạnh BC. + Cho đường tròn (O) có đường kính BC, A là điểm nằm trên (O) (AB < AC và A khác B). Đường tròn ngoại tiếp tam giác ABO cắt đoạn thẳng AC tại điểm thứ hai là K. Đường thẳng BK cắt (O) tại điểm thứ hai là L. Cát đường thẳng CL, OK cắt nhau tại I. Chứng minh ba điểm A, B, I thẳng hàng? + Cho đường thẳng 28 d y x 3 và parabol 1 2 P y 3 x. Tìm tọa độ giao điểm của (d) và (P).