Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối kỳ 2 Toán 12 năm 2022 - 2023 trường THPT Lao Bảo - Quảng Trị

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề minh họa kiểm tra cuối học kỳ 2 môn Toán 12 năm học 2022 – 2023 trường THPT Lao Bảo, tỉnh Quảng Trị; đề thi hình thức trắc nghiệm, gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án và hướng dẫn giải các bài toán vận dụng – vận dụng cao. Trích dẫn Đề minh họa cuối kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Lao Bảo – Quảng Trị : + Người ta muốn trồng hoa Dã Quỳ trên một mảnh vườn giới hạn bởi một đường parabol và một nửa đường elip có độ dài trục lớn bằng 8m, nửa độ dài trục bé bằng 3m (phần tô đậm như hình vẽ). Biết rằng để trồng một mét vuông hoa Dã Quỳ cần 350.000 đồng. Số tiền để trồng xong vườn hoa Dã Quỳ bằng (làm tròn đến hàng ngàn). + Trong không gian Oxyz, cho điểm M (2;5;3) và đường thẳng 1 2 2 2 x t d yt z t. Biết phương trình mặt phẳng (P) chứa d sao cho khoảng cách từ M đến (P) lớn nhất có dạng ax by cz 3 0 với abc Z. Khi đó a b bằng? + Trong không gian Oxyz, cho hai điểm A B 2 24 33 1 và mặt phẳng (P xy z) 2 2 8 0. Gọi M abc là điểm thuộc (P) sao cho 2 2 3 MA MB đạt giá trị nhỏ nhất. Tính S abc.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 2 Toán 12 năm 2017 - 2018 trường THPT Kim Liên - Hà Nội
Đề kiểm tra học kỳ 2 Toán 12 năm 2017 – 2018 trường THPT Kim Liên – Hà Nội mã đề 001 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, học sinh làm bài trong khoảng thời gian 90 phút, kỳ thi được diễn ra vào ngày 27/04/2018 nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 12 trong giai đoạn HK2, kiến thức được kiểm tra rơi vào các nội dung: nguyên hàm, tích phân, số phức, hình học tọa độ không gian Oxyz và các bài toán liên quan đến các nội dung kiến thức trên, đề thi có đáp án các mã đề 001, 002, 003, 004. Trích dẫn đề kiểm tra học kỳ 2 Toán 12 năm 2017 – 2018 : + Trong mặt phẳng tọa độ, tập hợp điểm M(x;y) biểu diễn của số phức z = x + yi (x, y ∈ R) thỏa mãn |z – 1 + 3i| = |z – 2 – i| là: A. Đường tròn đường kính AB với A(1;-3); B(2;1). B. Đường thẳng trung trực của đoạn thẳng AB với A(1;-3); B(2;1). C. Trung điểm của đoạn thẳng AB với A(1;-3); B(2;1). D. Đường thẳng trung trực của đoạn thẳng AB với A(1;-3); B(-2;-1). [ads] + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x = t, y = 1 – t, z = -1 + 2t và mặt phẳng (α): x + 3y + z – 2 = 0. Khẳng định nào sau đây là đúng? A. Đường thẳng d cắt mặt phẳng (α). B. Đường thẳng d nằm trên mặt phẳng (α). C. Đường thẳng d vuông góc với mặt phẳng (α). D. Đường thẳng d song song với mặt phẳng (α). + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;2;1); M(3;0;0) và mặt phẳng (P): x + y + z – 3 = 0. Đường thẳng Δ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng Δ là nhỏ nhất. Gọi vectơ u(a;b;c) là một vectơ chỉ phương của Δ (a, b, c là các số nguyên có ước chung lớn nhất là 1). Tính P = a + b + c.
Đề kiểm tra học kỳ 2 Toán 12 năm 2017 - 2018 trường Trần Đại Nghĩa - Đắk Lắk
Đề kiểm tra học kỳ 2 Toán 12 năm 2017 – 2018 trường Trần Đại Nghĩa – Đắk Lắk mã đề 129 được biên soạn nhằm đánh giá chất lương học tập môn Toán của học sinh khối 12 trong giai đoạn HK2, do đó, nội dung đề thi chỉ bao gồm các kiến thức trong chương trình HK2 Toán 12: nguyên hàm, tích phân và ứng dụng, số phức, phương pháp tọa độ trong không gian Oxyz, đề thi có đáp án (được tô màu đỏ). Trích dẫn đề kiểm tra học kỳ 2 Toán 12 năm 2017 – 2018 : + Cho số phức z = (√2 – 3i)^2. Tìm phần thực và phần ảo của số phức z. A. Phần thực bằng -7 và Phần ảo bằng -6√2. B. Phần thực bằng 7 , Phần ảo bằng 6√2. C. Phần thực bằng -7, Phần ảo bằng 6√2i. D. Phần thực bằng 7 và Phần ảo bằng 6√2i. [ads] + Cho số phức z thỏa mãn |z| = √2/2 và điểm A trong hình vẽ bên là điểm biểu diễn của z. Biết rằng trong hình vẽ bên, điểm biểu diễn của số phức w = 1/iz là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn của số phức w là? + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): (m^2 – 1)x – 4y – 8z + 6 = 0 và mặt phẳng (Q): 2x – y – 2z + 4 = 0. Khi đó tất cả các giá trị thực của m để mặt phẳng (P) song song mặt phẳng (Q) là?
Đề kiểm tra học kỳ 2 Toán 12 năm 2017 - 2018 sở GD và ĐT Quảng Trị
Đề kiểm tra học kỳ 2 Toán 12 năm 2017 – 2018 sở GD và ĐT Quảng Trị mã đề 157 gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được diễn ra vào chiều ngày 26/04/2018 nhằm đánh giá chất lượng dạy và học môn Toán 12 của giáo viên và học sinh khối 12 tại các trường cấp ba trên địa bàn tỉnh Quảng Trị trong giai đoạn HK2, đề thi có đáp án các mã đề 157, 256, 358, 455. Trích dẫn đề thi học kỳ 2 Toán 12 sở Quảng Trị 2017 – 2018 : + Trong không gian Oxyz, cho mặt cầu (S) có phương trình x^2 + y^2 + z^2 – 2x + 2y + 1 = 0. Viết phương trình (P) đi qua hai điểm A(0;-1;1), B(1;-2;1) đồng thời cắt mặt cầu (S) theo giao tuyến là đường tròn có chu vi bằng √2π. [ads] + Các điểm biểu diễn số phức z thỏa mãn z.z‾ + 3(z – z‾) = 5 + 12i thuộc đường nào trong các đường cho bởi phương trình sau đây? + Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;0;-5) bán kính r = 4 và điểm M(1;3;-1). Các đường thẳng qua M tiếp xúc với (S) tại các tiếp điểm thuộc đường tròn có bán kính R bằng bao nhiêu?
Đề kiểm tra chất lượng HK2 Toán 12 năm học 2017 - 2018 sở GD và ĐT Lâm Đồng
Đề kiểm tra chất lượng HK2 Toán 12 năm học 2017 – 2018 sở GD và ĐT Lâm Đồng mã đề 001 được biên soạn với cấu trúc gồm 6 trang, 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong khoảng thời gian 90 phút, kỳ thi được tổ chức vào chiều 26/04/2018 nhằm đánh giá chất lượng dạy và học môn Toán 12 của giáo viên và học sinh khối 12 tại các trường THPT trên địa bàn tỉnh Lâm Đồng, đề thi học kỳ 2 Toán 2 có đáp án các mã đề 001, 002, 003, 004. Trích dẫn đề thi HK2 Toán 12 sở Lâm Đồng 2017 – 2018 : + Biết tập hợp các điểm biểu diễn số phức z = x + yi là nữa đường tròn tâm O(0;0) bán kính R = 2 (phần tô đậm, kể cả đường giới hạn) như hình minh họa bên. Trong các khẳng định sau, khẳng định nào đúng? [ads] + Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu (S1) và (S2) có phương trình lần lượt là (x – 2)^2 + (y – 1)^2 + (z – 1)^2 = 16 và (x – 2)^2 + (y – 1)^2 + (z – 5)^2 = 4. Gọi (P) là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu (S1) và (S2). Khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng? + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành OABC có tọa độ điểm A(3;1), C(-1;2) (tham khảo hình vẽ bên). Số phức nào sau đây có điểm biểu diễn là điểm B?