Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài tập mặt cầu ngoại tiếp hình chóp - Nguyễn Thanh Hậu

Tài liệu gồm 9 trang trình bày 4 phương pháp xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp và bài tập áp dụng có lời giải chi tiết. Bài toán mặt cầu ngoại tiếp hình chóp xuất hiện nhiều trong các đề kiểm tra, các đề thi vào đại học. Qua thực tế giảng dạy chúng tôi thấy rằng: Nhiều học sinh tỏ ra lúng túng khi gặp các bài toán có liên quan đến mặt cầu. Bài viết này cùng trao đổi với các em và bạn đồng nghiệp một vài kỹ thuật giải toán thông qua các ví dụ về mặt cầu ngoại tiếp hình chóp. Các vấn đề thường gặp liên quan đến bài toán mặt cầu ngoại tiếp hình chóp kiểu như: Chứng minh các điểm nào đó cùng nằm trên một mặt cầu? Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp? Hay tính diện tích mặt cầu ngoại tiếp hình chóp hay thể tích khối cầu ngoại tiếp khối chóp?. [ads] Tóm tắt nội dung tài liệu : I. Cơ sở lí thuyết II. Các phương pháp xác định tâm mặt cầu ngoại tiếp hình chóp Bài toán: Xác định tâm I và tính bán kính R của mặt cầu ngoại tiếp hình chóp SA1A2…An. Phương pháp 1: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Xác định tâm O đường tròn ngoại tiếp đa giác đáy A1A2…An. + Dựng trục Δ của đường tròn ngoại tiếp đa giác đáy A1A2…An (Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy). + Vẽ mặt phẳng trung trực (P) của một cạnh bên bất kì của hình chóp. + Giả sử I= Δ ∩ (P) khi đó I là tâm mặt cầu ngoại tiếp cần dựng. Phương pháp 2: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Dựng trục Δ1 của đường tròn ngoại tiếp đa giác đáy A1A2…An.(Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy.) + Dựng trục Δ2 của đường tròn ngoại tiếp tam giác của mặt bên sao cho Δ1 và Δ2 đồng phẳng. + Giả sử I = Δ1 ∩ Δ2, khi đó I là tâm mặt cầu ngoại tiếp. Phương pháp 3: Ta chứng minh các đỉnh của hình chóp cùng nhìn hai đỉnh còn lại của hình chóp dưới một góc vuông hoặc tất cả các đỉnh của hình chóp cùng nhìn hai điểm nào đó dưới một góc vuông. Phương pháp 4: Trong không gian ta dự đoán điểm đặc biệt I nào đó rồi chứng minh I cách đều các đỉnh của hình chóp. III. Cách xác định tâm và tính bán kính mặt cầu ngoại tiếp của một số hình chóp đặc biệt IV. Các ví dụ minh họa

Nguồn: toanmath.com

Đọc Sách

385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 - Hứa Lâm Phong
Tài liệu gồm 64 trang trích dẫn 385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 do thầy Hứa Lâm Phong biên soạn.
Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng - Đặng Việt Đông
Tài liệu gồm 50 trang tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng có đáp án. Trích dẫn tài liệu : 1. Một khối gạch hình lập phương (không thấm nước) có cạnh bằng 2 được đặt vào trong một chiếu phễu hình nón tròn xoay chứa đầy nước theo cách như sau: Một cạnh của viên gạch nằm trên mặt nước (nằm trên một đường kính của mặt này); các đỉnh còn lại nằm trên mặt nón; tâm của viên gạch nằm trên trục của hình nón. Tính thể tích nước còn lại ở trong phễu (làm tròn 2 chữ số thập phân). [ads] 2. Học sinh lần đầu thử nghiệm tên lửa tự chế phóng từ mặt đất theo phương thẳng đứng với vận tốc 15m/s. Hỏi sau 2,5s tên lửa bay đến độ cao bao nhiêu ? (giả sử bỏ qua sức cản gió, tên lửa chỉ chịu tác động của trọng lực g = 9,8 m/s2) 3. Một công ti chuyên sản xuất container muốn thiết kế các thùng gỗ đựng hàng bên trong dạng hình hộp chữ nhật không nắp, đáy là hình vuông, có V = 62,5 cm3. Hỏi các cạnh hình hộp và cạnh đáy là bao nhiêu để S xung quanh và S đáy nhỏ nhất?
121 bài tập trắc nghiệm câu hỏi thực tế, có hướng dẫn giải - Nguyễn Bảo Vương
Tài liệu gồm 48 trang với 121 bài toán thực tế có hướng dẫn giải và đáp án do tác giả Nguyễn Bảo Vương cùng nhóm tác giả tổng hợp và biên soạn. Trích một số bài toán trong tài liệu: 1. Một con cá bơi ngược dòng để vượt một khoảng cách là 300km, vận tốc nước là 6(km/h). Vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức: E(v) =  c.v^3.t, trong đó c là hằng số, E tính bằng Jun. Hỏi vận tốc bơi của cá khi nước đứng yên sao cho năng lượng tiêu hao ít nhất là bao nhiêu ? [ads] 2. Trong tất cả các hình chữ nhật có diện tích S thì hình chữ nhật có chu vi nhỏ nhất bằng bao nhiêu? 3. Một nhà sản xuất cần thiết kế một thùng sơn dạng hình trụ có nắp đậy với dung tích 1000 cm3. Biết rằng bán kính của nắp đậy sao cho nhà sản xuất tiết kiệm nguyên vật liệu nhất có giá trị là a. Hỏi giá trị a gần với giá trị nào nhất dưới đây?
80 bài tập trắc nghiệm luyện tập chuyên đề hàm số - Mẫn Ngọc Quang
Tài liệu gồm 54 trang với các bài toán trắc nghiệm ôn tập chuyên để hàm số, các bài tập có đáp án và được giải chi tiết. Trích dẫn tài liệu : + Cho hàm số y = x^3 – 3x^2 (C). Cho các mệnh đề: (1) Hàm số có tập xác định R (2) Hàm số đạt cực trị tại x = 0; x = 2 (3) Hàm số đồng biến trên các khoảng (-∞; 0) ∪ (2; +∞) (4) Điểm (0; 0) là điểm cực tiểu (5) yCĐ – yCT = 4 Có bào nhiêu mệnh đề đúng? [ads] + Cho hàm số y = x^3 – 3x^2 (C). Chọn số nhận định sai trong các nhận định sau: (1) Hàm số đồng biến trên khoảng (0; 2), hàm số nghịch biến trên các khoảng (-∞; 0); (2; +∞) (2) Hàm số đạt cực tiểu tại x = 0, hàm số đạt cực đại tại x = 2 (3) Phương trình tiếp tuyến của (C) tại điểm có hoành độ x0 = 1 là y = 3x – 5 + Cho hàm số y = (2x + 1)/(x + 1) có đồ thị (C). Cho các mệnh đề: (1) Hàm số đồng biến trên toàn tập xác định D = R\{1} (2) Hàm số không có cực trị (3) Đồ thị hàm số có tiệm cận đứng là y = 2, tiệm cận ngang là x = -1 (4) Đồ thị hàm số đối xứng nhau qua giao của hai tiệm cận I(-1; 2) Có bao nhiêu mệnh đề đúng?